A. Goswami, J. Goswami / Tetrahedron Letters 46 (2005) 4411–4413
OH
R4
4413
O
R4
R3
R2
R3
R2
R1
R2
R2
R3
R3
i.
ii
+
R1
R1
R1
1a-g
2a-g
3a-g, b1
4a-g, b1
Scheme 1. Reagents and conditions: R1 = H, OMe, NO2, OCH2Ph; R2 = H, OH, OAc (for 3b1 and 4b1); R3 = H, Cl, Br; R4 = OH, OAc; i = NaBH4/
MeOH/0–5 ꢁC; ii = Novozyme[435]/THF/25–70 ꢁC.
9. Ueji, S.-I.; Nishimura, M.; Kudo, R.; Matsumi, R.;
Watanabe, K.; Ebara, Y. Chem. Lett. 2001, 912–913.
10. Almarsson, O.; Klibanov, A. M. Biotechnol. Bioeng. 1998,
49, 87–92.
of (3b) to (4b) was 1.07:1 and that of (3b1) to (4b1) was
1.3:1.
From the foregoing studies we conclude that veryhigh
enantioselectivityin transesterification reactions of sec-
ondaryalcohols with CAL-B (Novozyme[435]) in the
presence of 5% DMSO byvolume can be achieved when
the sizes of the substituents at the chiral center are sig-
nificantlydifferent.
11. Theil, F. Tetrahedron 2000, 56, 2905–2919.
12. General procedure: To a solution of the racemic alcohol
(1.86 mmol) in dryTHF (5 mL) were added Novo-
zyme[435] (0.318 g), vinyl acetate (32 mmol), and DMSO
(5% of the total reaction volume). The mixture was stirred
for about 7–75 h at 25–70 ꢁC depending upon the
substrate. After completion (TLC), the reaction mixture
was filtered, the solvent evaporated under reduced
pressure, and the residue quenched with water (20 mL).
The products were extracted with ethyl acetate, the
extract was dried and the solvent was distilled under
reduced pressure. The two products formed were sepa-
rated bysilica gel column chromatographyeluting with
pet.ether–ethyl acetate mixture and were identified from
their spectroscopic data which matched with the
reported14–18 values. The enantiomeric excesses of the
products were determined byHPLC analysis in a Chiral-
cel OD column (250 · 46 mm i.d.), particle size 10 lm
using 15% isopropanol in hexane as the mobile phase,
flow rate 1 mL/min.
References and notes
1. (a) Lauman, K.; Breigoff, D.; Schneider, M. P. J. Chem.
Soc., Chem. Commun. 1988, 1459–1461; (b) Seemayer, R.;
Schneider, M. P. Tetrahedron: Asymmetry 1992, 3, 827–
830; (c) Conde, S.; Fierros, M.; Rodriguez-Franco, M. I.;
Puig, C. Tetrahedron: Asymmetry 1998, 9, 2229–2232.
2. Zaks, A.; Klibanov, A. M. Proc. Natl. Acad. Sci. U.S.A.
1985, 82, 3192–3196.
3. (a) Tramper, J.; Vander, P. H. C.; Linco, P. Biocatalysis in
Organic Synthesis: A Comprehensive Handbook; VCH:
New York, 1995; (b) Kita, Y.; Takabe, Y.; Murata, K.;
Naka, T.; Akai, S. J. Org. Chem. 2000, 65, 85.
4. Ohrner, N.; Martinelle, M.; Mattson, A.; Norin, T.; Hult,
K. Biotechnol. Lett. 1992, 14, 263–268.
13. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.;
Cuccia, L. A. J. Org. Chem. 1991, 56, 2656–2665.
14. Kamal, A.; Sandbhor, M.; Venkata Raman, K. Tetrahe-
dron: Asymmetry 2002, 13, 815–820.
15. Kamal, A.; Khanna, G. B. R.; Ramu, R. Tetrahedron:
Asymmetry 2002, 13, 2039–2051.
5. Faber, K., 5th Ed. In Biotransformation in Organic
Chemistry; Springer-Verlag: Berlin, Heidelberg, 2004;
Vol. 72.
16. Janseen, A. J. M.; Klunder, A. J. H.; Zwanenburg, B.
Tetrahedron 1991, 47, 7645–7662.
17. Goswami, A.; Bezbaruah, R. L.; Goswami, J.; Borthakur,
N.; Dey, D.; Hazarika, A. K. Tetrahedron: Asymmetry
2000, 11, 3701–3709.
18. Hiratake, J.; Inagaki, M.; Nishioka, T.; Oda, J. J. Org.
Chem. 1988, 53, 6130–6133.
19. Chem, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J.
Am. Chem. Soc. 1982, 104, 7294–7299.
6. (a) Kirk, O.; Cristensen, M. W. Org. Process Res. Dev.
2002, 6, 445–451; (b) Gonzatez-Sabin, J.; Gotor, V.;
Rebolledo, F. Tetrahedron: Asymmetry 2002, 13, 1315–
1320.
7. Vogl, E. M.; Groger, H.; Shibasaki, M. Angew. Chem., Int.
Ed. 1999, 38, 1570–1577.
8. Palomo, J. M.; Fernandez-Lorenre, G.; Matco, C.; Fuen-
tes, M.; Fernandez-Lafuente, R.; Guisan, J. M. Tetra-
hedron: Asymmetry 2002, 13, 1337–1345.