ꢁꢁꢁꢀ
898ꢀ ꢀB. Nateghi and C. Janiak: Pyrazole-phosphonic acid ligands
[9] K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-
Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad.
Sci. USA 2006, 103, 10186–10191.
[10] J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A.
Faheem, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 15834–15842.
[11] M. Tonigold, Y. Lu, A. Mavrandonakis, A. Puls, R. Staudt, J.
Möllmer. J. Sauer, D. Volkmer, Chem. Eur. J. 2011, 17, 8671–8695.
[12] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
[13] C. Heering, I. Boldog, V. Vasylyeva, J. Sanchiz, C. Janiak, Cryst-
EngComm 2013, 15, 9757–9768.
[14] B. J. Burnett, P. M. Barron, W. Choe, CrystEngComm 2012, 14,
3839–3846.
[15] M. Viciano-Chumillas, S. Tanase, L. J. de Jongh, J. Reedijk, Eur.
J. Inorg. Chem. 2010, 22, 3403–3418.
[16] C. W. Lu, Y. Wang, Y. Chi, Chem. Eur. J. 2016, 22, 17892–17908.
[17] K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112,
1034–1054.
[18] S. J. I. Shearan, N. Stock, F. Emmerling, J. Demel, P. A. Wright,
K. D. Demadis, M. Vassaki, F. Costantino, R. Vivani, S. Sallard, I.
R. Salcedo, A. Cabeza, M. Taddei, Crystals 2019, 9, 270.
[19] R. Silbernagel, C. H. Martin, A. Clearfield, Inorg. Chem. 2016,
55, 1651–1656.
[20] M. T. Wharmby, J. P. S. Mowat, S. P. Thompson, P. A. Wright, J.
Am. Chem. Soc. 2011, 133, 1266–1269.
[21] T. Rhauderwiek, K. Wolkersdörfer, S. Øien-ꢀØꢀdegaard, K. P. Lil-
lerud, M. Wark, N. Stock, Chem. Commun. 2018, 54, 389–392.
[22] T. Rhauderwiek, H. Zhao, P. Hirschle, M. Doeblinger, B. Bueken,
H. Reinsch, D. D. Vos, S. Wuttke, U. Kolb, N. Stock, Chem. Sci.
2018, 9, 5467–5478.
CCDC 1961142 and 1961143 contain the supplementary
crystallographic data for 1ꢀ·ꢀHCl and 2ꢀ·ꢀHClꢀ·ꢀH2O, respec-
tively. These data can be obtained free of charge from The
4 Conclusions
In summary, two novel bifunctional pyrazolate-phos-
phonate ligands 3,5-dimethyl-4-(4-phosphonophenyl)-
1H-pyrazole, 1 and 4-(4-phosphonophenyl)-1H-pyrazole, 2
have been prepared via a Suzuki-Miyaura cross-coupling
and their crystal structures determined. These multiden-
tate ligands with five potential coordination sites offer
the use as suitable organic spacers to provide new coor-
dination polymers or metal-organic frameworks (MOFs).
The high thermal stability of the synthesized compounds
aids in the hydrothermal synthesis of coordination poly-
mers or MOFs. We are confident that in continuation of
this work a large number of interesting supramolecular
complexes for a variety of applications will be reported
in the future.
[23] J. Jia, X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hub-
berstey, G. Walker, E. J. Cussen, M. Schroeder, Chem. Commun.
2007, 840–842.
5 Supporting information
[24] X. J. Gu, Z. H. Lu, Q. Xu, Chem. Commun. 2010, 46, 7400–7402.
[25] T.–L. Ho, Chem. Rev. 1975, 75, 1–20.
1
13
31
PXRD patterns, H, C, P NMR and IR spectra are given
as supplementary material available online (DOI: 10.1515/
znb-2019-0170).
[26] M. O’Keeffe, Chem. Soc. Rev. 2009, 38, 1215–1217.
[27] M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675–702.
[28] P. O. Adelani, L. J. Jouffret, J. E. S. Szymanowski, P. C. Burns,
Inorg. Chem. 2012, 51, 12032–12040.
[29] P. O. Adelani, G. E. Sigmon, P. C. Burns, Inorg. Chem. 2013, 52,
6245–6247.
Acknowledgements: The authors thank Dr. Ishtvan
Boldog for his kind support during this project.
[30] J. Dechnik, A. Nuhnen, C. Janiak, Cryst. Growth Des. 2017, 17,
4090–4099.
[31] C. Heering, B. Francis, B. Nateghi, G. Makhloufi, S. Luedeke, C.
Janiak, CrystEngComm 2016, 18, 5209–5223.
[32] J. Liu, R. Zeng, C. Zhou, J. Zou, Chin. J. Chem. 2011, 29, 309–313.
[33] A. Spassow, Organic Syntheses 1955, 3, 390.
[34] A. Sarkar, S. R. Roy, N. Parikh, A. K. Chakraborti, J. Org. Chem.
2011, 76, 7132–7140.
References
[1] C. Janiak, Dalton Trans. 2003, 2781–2804.
[2] S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed. 2004,
43, 2334–2375.
[3] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkovc, F. Ver-
poort, Chem. Soc. Rev. 2015, 44, 6804–6849.
[4] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38,
1477–1504.
[5] S. Natarajan, P. Mahata, Curr. Opin. Solid State Mater. Sci. 2009,
13, 46–53.
[6] G. Alberti, M. Casciola, U. Costantino, R. Vivani, Adv. Mater.
1996, 8, 291–303.
[7] A. Clearfield, Dalton Trans. 2008, 6089–6102.
[8] X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int.
Ed. 2006, 45, 1557–1559.
[35] T. Steiner, Acta Crystallogr. B 1998, 54, 456–463.
[36] J. Grell, J. Bernstein, G. Tinhofer, Crystallogr. Rev. 2002, 8, 1–56.
[37] I. Boldog, J. C. Daran, A. N. Chernega, E. B. Rusanov, H.
Krautscheid, K. V. Domasevitch, Cryst. Growth Des. 2009, 9,
2895–2905.
[38] F. H. Allen, W. D. Samuel Motherwell, P. R. Raithby, G. P.
Shields, R. Taylor, New J. Chem. 1999, 23, 25–34.
[39] T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48–76.
[40] S. Vairam, S. Govindarajan, Thermochim. Acta 2004, 414,
263–270.
[41] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483.
Brought to you by | provisional account
Unauthenticated
Download Date | 1/9/20 5:15 AM