A. Tillack et al. / Journal of Organometallic Chemistry 603 (2000) 116–121
121
SiMe3); 16.0 (4-C); 69.1 (3-C); 73.9 (1-C); 127.7 (2m-Ph);
Acknowledgements
127.79, 127.82 (m-Ph); 129.5 (4p-Ph); 133.4, 133.5 (3-i-
Ph); 134.2, 134.5 (1-i-Ph); 135.6 (3o-Ph); 135.8 (o-Ph);
210.7 (2-C). 29Si-NMR: l (ppm) −20.5 (1JSiꢀH:189.9
Hz, 1-SiPh); −13.9 (1JSiꢀH:192.0 Hz, 3-SiPh); −1.6
(2JSiꢀH:23.7 Hz, 1-SiMe3); 2.5 (2JSiꢀH:22.6 Hz, 4-
SiMe3).
The authors wish to thank the Deutsche Forschungs-
gemeinschaft for financial support, Professor Dr M.
Beller for helpful discussions, Professor Dr H. Brunner
and co-workers of the IfOK for a gift of ligands,
especially Dr V. Tararov for the ligand POP-BZ, and Dr
A. Spannenberg for the X-ray analysis of 1. Furthermore,
we thank Ch. Mewes, A. Modler, and B. Harzfeld for
technical assistance.
3.2.5. Preparation of NiCl2[(−)-PPM]
NiCl2[(−)-PPM] was prepared according to the pro-
cedure for the synthesis of NiCl2[(−)-DIOP] [12b].
Green solid; MS (FAB): m/z (rel. int. (%)) 546 [90,
M+−Cl], 511 [34, M+−2Cl].
References
3.2.6. X-ray structure determination of 1
X-ray diffraction data were collected on a STOE-IPDS
diffractometer using Mo–Ka radiation (u=0.71073 A).
The structure was solved by direct methods [13a] and
refined by full-matrix least-squares techniques against F2
[13b]. Crystallographic data for 1 are given in Table 5.
[1] (a) D.J. Pasto, Tetrahedron 40 (1984) 2805. (b) H.F. Schuster,
G.M. Coppola, Allenes in Organic Synthesis, Wiley, New York,
1984. (c) C. Bruneau, P.H. Dixneuf, A.R. Katritzky, O. Meth-
Cohn, C.W. Rees (Eds.), Comprehensive Organic Functional
Group Transformations, vol. 1, Pergamon, Oxford, 1995 (Chapter
20). (d) M. Manoharan, P. Venuvanalingen, J. Chem. Soc. Perkin
Trans. 2 (1996) 1423. (e) I. Ikeda, K. Honda, E. Osawa, M. Shiro,
M. Aso, K. Kanematsu, J. Org. Chem. 61 (1996) 2031. (f) R.
Lunkwitz, K. Zab, C. Tschierske, J. Prakt, Chem.-Chem. Ztg. 340
(1998) 662. (g) M. Purpura, N. Krause, Eur. J. Org. Chem. (1999)
267 and refs therein.
,
3.2.7. Methods of determination of enantiomeric excess
In general, enantiomeric excesses are determined by
gas chromatography and HPLC, respectively. The deter-
mination of enantiomers of allene 5 was carried out by
HPLC (see Table 4). In order to achieve the enantiomeric
resolution normal phase systems with different chiral
stationary phases were used. A Chiralcel OD-H column
showed the best results. Baseline resolution was obtained
with an 100% n-hexane eluent. Various chiral columns
were tested to separate both enantiomers of allene 4. In
the case of GC no separation could be observed whereas
a partial separation could be achieved by means of
HPLC, which was unfortunately too inaccurate for an ee
determination. Therefore, investigations with shift
reagents were carried out to determine the enantiomeric
purity by NMR spectroscopy. It is known that certain
chiral lanthanoid shift reagents (CLSR) together with
silver(I) complexes induce a signal separation in several
alkenes [14]. In the 1H-NMR spectra of 4 with Yb(hfc)3/
Ag(fod) the signals of both the CH2 and the tert-butyl
group were separated. Details will be given in [15]. The
enantiomeric excess was determined using the tert-butyl
signals. The results are given in Tables 1–3.
[2] R.L. Danheiser, E.J. Stoner, H. Koyama, D.S. Yamashita, C.A.
Klade, J. Am. Chem. Soc. 111 (1989) 4407.
[3] (a) C.J. Elsevier, in: G. Helmchen, R.W. Hoffmann, J. Mulzer, E.
Schumann (Eds.), Houben-Weyl series Methods of Organic Chem-
istry, vol. E21a, Thieme Verlag, Stuttgart, 1995, pp. 537. (b) A.G.
Myers, B. Zheng, J. Am. Chem. Soc. 118 (1996) 4492. (c) P.H.
Dixneuf, T. Guyot, M.D. Ness, S.M. Roberts, Chem. Commun.
(1997) 2083.
[4] W. de Graaf, G. van Knoten, C.J. Elsevier, J. Organomet. Chem.
378 (1989) 115.
[5] (a) Y. Maruyama, K. Yoshiuchi, F. Ozawa, Y. Wakatsuki, Chem.
Lett. (1997) 623. (b) Y. Maruyama, K. Yamamura, I. Nakayama,
K. Yoshiuchi F. Ozawa, J. Am. Chem. Soc. 120 (1998) 1421, and
refs therein.
[6] (a) T. Kusumoto, T. Hiyama, Chem. Lett. (1985) 1405. (b) T.
Kusumoto, K. Ando, T. Hiyama, Bull. Chem. Soc. Jpn. 65 (1992)
1280.
[7] A. Tillack, S. Pulst, W. Baumann, H. Baudisch, K. Kortus, U.
Rosenthal, J. Organomet. Chem. 532 (1997) 117.
[8] J. Holz, M. Quirmbach, U. Schmidt, D. Heller, R. Stu¨rmer, A.
Bo¨rner, J. Org. Chem. 63 (1998) 8031.
[9] H. Brunner, W. Zettlmeier, Handbook of Enantioselective Catal-
ysis, vol. II, VCH, Weinheim, 1993, and refs therein.
[10] Y. Ohga, Y. Iitaka, K. Achiwa, Chem. Lett. (1980) 861.
[11] E.M. Vogl, H. Gro¨ger, M. Shibasaki, Angew. Chem. 111 (1999)
1672; Angew. Chem. Int. Ed. 38 (1999) 1570.
[12] V. Gramlich, G. Consiglio, Helv. Chim. Acta 62 (1979) 1016. (b)
A. Wille, Dissertation, Universita¨t Gesamthochschule Kassel,
1997.
4. Supplementary material
Crystallographic data for the structural analysis have
been deposited at the Cambridge Crystallographic Data
Centre, CCDC no. 136870 for compound 1. Copies of
this information may be obtained free of charge from The
Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ,
UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.
ac.uk or www: http://www.ccdc.cam.ac.uk).
[13] (a) G.M. Sheldrick, SHELXS-86, Acta Crystallogr. Sect. A 46 (1990)
467. (b) G.M. Sheldrick, SHELXL-93, University of Go¨ttingen,
Germany, 1993, unpublished.
[14] (a) A. Mannschreck, W. Munninger, T. Burgemeister, J. Gore, B.
Cazes, Tetrahedron 42 (1986) 399. (b) T.J. Wenzel, R.E. Sievers,
J. Am. Chem. Soc. 104 (1982) 382. (c) T.J. Wenzel, NMR Shift
Reagents, CRC Press, Boca Raton, FL, 1987 (Chapter 3).
[15] M. Michalik, C. Koy, D. Michalik, A. Tillack, submitted.