J . Org. Chem. 2001, 66, 5645-5648
5645
the case of kinetic resolution, the products need to be
separated to enable analysis of catalyst activity and
selectivity. Therefore, techniques that facilitate the sepa-
ration of kinetic resolution products without the need for
column chromatography are highly desirable.
A Sequ en tia l Ap p lica tion of Kin etic
Resolu tion a n d P olym er -Su p p or ted
Sca ven gin g for th e Isola tion of Ch ir a l
Secon d a r y Alcoh ols
The preparation of chiral sec-alcohols by catalytic
processes is a very active area of research because of their
importance as building blocks in asymmetric synthesis.2c
Kinetic resolution can be performed whereby a racemic
mixture of sec-alcohols is transformed into optically active
products (e.g., an ester and remaining alcohol) that can
be separated typically by column chromatography. To
circumvent the need for time-consuming column chro-
matography, esterification of sec-alcohols with succinic
anhydride followed by an acid-base extraction has been
reported.8 This principle has also been extended to the
conversion of alcohols to sulfate esters.9 It should be noted
that while these two methods are important, their scope
is limited to large-scale reactions. Furthermore, their
generality is hampered by the choice of effective acylating
agents. A soluble polymer scavenging approach of a
racemic trifluoroethyl carbonate through lipase-catalyzed
transesterification with poly(ethylene glycol) (PEG) has
also been reported.10 However, this methodology also
presents several limitations. First, a unique catalyst
accepting PEG is needed. Second, an elaborate synthetic
scheme to form each activated carbonate is required for
each new acyl donor. More recently, Vedejs has reported
a parallel kinetic resolution performed under triphasic
conditions.11 During this process, one of the enantiomers
reacts with a polymer-supported reagent enabling sepa-
ration of the enantiomers by filtration. To complement
these existing technologies, we present a method to
separate the products from the kinetic resolution of sec-
alcohols.
Armando Co´rdova, Martin R. Tremblay,
Bruce Clapham, and Kim D. J anda*
Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550
North Torrey Pines Road, La J olla, California 92037
kdjanda@scripps.edu
Received May 24, 2001
In tr od u ction
The preparation of enantiomerically pure or enan-
tioenriched organic compounds is of great importance.1
As such, the development of chemical and biochemical
catalysts for both enantioselective synthesis and the
kinetic resolution of racemates has advanced at an
accelerated pace.2-4 In particular, kinetic resolution is
important in asymmetric synthesis since it provides both
enantiomers of a compound. Developments in the areas
of combinatorial chemistry, catalytic antibodies, site-
directed mutagenesis, and directed evolution of biocata-
lysts have fueled the discovery and optimization of both
chemical and biological catalysts.5,6 As powerful as these
technologies have become, the catalyst discovery process
still faces a bottleneck centered around the analysis and
processing of both catalyst selectivity and activity.7 In
* To whom correspondence should be addressed. Tel: (858) 784-
2515. Fax: (858) 784-2595.
(1) (a) Chirality in Industry: The Commercial Manufacture and
Applications of Optically Active Compounds; Collins, A. D., Sheldrake,
G. N., Crosby, J ., Eds.; Wiley: Chichester, 1992. (b) Chirality in
Industry II: Developments in the Commercial Manufacture and
Applications of Optically Active Compounds; Collins, A. N., Sheldrake,
G. N., Crosby, J ., Eds.; Wiley: Chichester, 1997. (c) Sheldon, R. A.
Chirotechnology: Industrial Synthesis of Optically Active Compounds;
Dekker: New York, 1993.
(2) (a) Comprehensive Asymmetric Catalysis, Vol. I-III; J acobsen,
E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999. (b)
Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New
York, 1994. (c) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH:
Weinheim, 1993. (d) Berrisford, D. J .; Bolm, C.; Sharpless, K. B. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1059.
(3) (a) Spivey, A. C.; Maddaford, A.; Redgrave, A. J . Org. Prep. Proc.
Int. 2000, 32, 331. (b) Long, Y. O.; Paquette, L. A. Chemtracts 2000,
13, 9. (c) Yamada, T. Chemtracts 2000, 13, 9. (d) Vedejs, E.; Mackay,
J . A. Org. Lett. 2001, 3, 535. (e) Vedejs, E.; Daugulis, O. J . Am. Chem.
Soc. 1999, 121, 5813. (f) Fu, G. C. Acc. Chem. Res. 2000, 33, 412. (g)
Tao, B.; Lo, M. M.-C.; Fu, G. C. J . Am. Chem. Soc. 2001, 123, 353.
(4) (a) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic
Chemistry; Pergamon: Oxford, 1994. (b) Faber, K. Biotransformations
in Organic Chemistry, 3rd ed.; Springer: Berlin, 1997. (c) Schmid, A.;
Dordick, J . S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature
2001, 409, 258.
(5) (a) Liu, G.; Ellman, J . A. J . Org. Chem. 1995, 60, 7712. (b)
J andeleit, B.; Schaefer, D. J .; Powers, T. S.; Turner, H. W.; Weinberg,
W. H. Angew. Chem., Int. Ed. Engl. 1999, 38, 2494. (c) Sigman, M. S.;
J acobsen, E. N. J . Am Chem. Soc. 1998, 120, 4901. (d) Cole, B. M.;
Shimizu, K. D.; Krueger, C. A.; Harrity, J . P. A.; Snapper, M. L.;
Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668. (e)
Francis, M. B.; J acobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999,
38, 937.
Resu lts a n d Discu ssion
Our strategy features a simple two-step procedure that
combines both kinetic resolution and separation of the
products using a solid-phase scavenging or “fishing out”
procedure (Scheme 1).12 The strength of our method is
that the kinetic resolution can be performed with either
a polymer-supported enzyme or a polymer-supported
chemical catalyst.13,14 Thus, after removal of the catalyst
from the kinetically resolved mixture by filtration, the
(7) (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 2001, 40, 284. and
references therein. (b) Harris, J . L.; Backes, B. J .; Leonetti, F.; Mahrus,
S.; Ellman, J . A.; Craik, C. S. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
7754. (c) Michels, P. C.; Khmelnitsky, Y. L.; Dordick, J . S.; Clarck, D.
S. Trends. Biotechnol. 1998, 16, 210.
(8) Gutman, A. L.; Brenner, D.; Boltanski, A. Tetrahedron: Asym-
metry 1993, 4, 839.
(9) Yamano, T.; Kikumoto, F.; Yamamoto, S.; Miwa, K.; Kawada,
M.; Ito, T.; Ikemoto, T.; Tomimatsu, K.; Mizuno, Y. Chem. Lett. 2000,
448.
(10) Whalen, L. J .; Morrow, S. J . Tetrahedron: Asymmetry 2000, 11,
1279.
(11) Vedejs, E.; Rozners, E. J . Am. Chem. Soc. 2001, 123, 2426.
(12) (a) Hodge, P. In Synthesis and Separations Using Functional
Polymers; Sherrington, D. C., Hodge, D., Eds. Wiley: New York, 1988.
(b) Seymor, E. S.; Fre´chet, J . M. J . Tetrahedron Lett. 1976, 17, 3669.
(c) Hori, M.; J anda, K. D. J . Org. Chem. 1998, 63, 889.
(13) Orrenius, C.; Mattson, A.; O¨ hrner, N.; Hult, K.; Norin, T.
Tetrahedron: Asymmetry 1994, 7, 1363.
(6) (a) Lerner, R. A.; Barbas, C. F., III; J anda, K. D. Harvey Lect.
1998, 92, 1. (b) Arnold, F. H. Nature 2001, 409, 253. (c) Altamirano,
M. M.; Blackburn, J . M.; Aguayo, C.; Fersht, A. R. Nature 2000, 403,
617. (d) Cane, D. E.; Walsh, C. T.; Khosla, C. Science 1998, 282, 63.
(e) Stemmer, W. D. Nature 1994, 370, 389.
(14) Clapham, B.; Cho, C.-W.; J anda, K. D. J . Org. Chem. 2001,
66, 868.
10.1021/jo010529u CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/11/2001