Running title
Chin. J. Chem.
Lett. 1984, 25, 3575-3578.
Conclusions
(a) Borah, A.; Sharma, A.; Hazarika, H.; Sharma, K.; Gogoi, P. Synthesis
of 1‑Azaanthraquinone: Sequential C−N Bond Formation/Lewis Acid
Catalyzed Intramolecular Cyclization Strategy, J. Org. Chem. 2017, 82,
8309-8316; (b) Yin, H.; Shan, N.; Wang, S.; Yao, Z. J. Total Synthesis of
Ascididemin-Type Alkaloids Using Alkyne Building Blocks, J. Org. Chem.
2014, 79, 9748-53; (c) Yin, H.; Kong, F.; Wang, S.; Yao, Z.-J. Assembly of
pentacyclic pyrido[4,3,2-mn]acridin-8-ones via a domino reaction ini-
tiated by Au(I)-catalyzed 6-endo-dig cycloisomerization of N-propar-
gylaminoquinones, Tetrahedron Lett. 2012, 53, 7078-7082; (d) Fei, N.;
Yin, H.; Wang, S.; Wang, H.; Yao, Z. J. CuCl2-Promoted 6-endo-dig Chlo-
rocyclization and Oxidative Aromatization Cascade: Efficient Construc-
tion of 1-Azaanthraquinones from N-Propargylaminoquinones, Org.
Lett. 2011, 13, 4208-4211.
In summary, we have developed a divergent and novel method
to synthesize two types of pyridoacridine alkaloids through palla-
dium-catalyzed reductive cyclization with Mo(CO)6 as reductant.
This transformation has a wide scope demonstrated by the prepa-
ration of total 34 analogues of both pyrido[2,3,4-kl]acridine and
pyrido[4,3,2-kl]acridine skeletons. The potential of employing this
method as a valuable synthetic tool to access polycyclic N-hetero-
cycles is attractive and intriguing due to the versatility of N-hetero-
cycle family in marine natural products, and we have demonstrated
it by the accomplishment of total synthesis of norsegoline, styelsa-
mine C and the necatorone skeleton.
(a) Melzer, B. C.; Plodek, A.; Bracher, F. Functionalization of 4-bromo-
benzo[c][2,7]naphthyridine via regioselective direct ring metalation. A
novel approach to analogues of pyridoacridine alkaloids, Beilstein J.
Org. Chem. 2019, 15, 2304-2310; (b) Plodek, A.; König, M.; Bracher, F.
Synthesis of the Azaoxoaporphine Alkaloid Sampangine and Ascidide-
min-Type Pyridoacridines through TMPMgCl·LiCl-Mediated Ring Clo-
sure, Eur. J. Org. Chem. 2015, 2015, 1302-1308; (c) Melzer, B.; Plodek,
A.; Bracher, F. Total Synthesis of the Marine Pyridoacridine Alkaloid
Demethyldeoxyamphimedine, J. Org. Chem. 2014, 79, 7239-7242; (d)
Kristensen, J.; Petersen, I. Synthesis of pyridoacridines through anionic
cascade ring closure, Synthesis 2014, 46, 1469-1474; (e) Petersen, I. N.;
Crestey, F.; Kristensen, J. L. Total synthesis of ascididemin via anionic
cascade ring closure, Chem. Commun. 2012, 48, 9092-9094.
(a) Brahic, C.; Darro, F.; Belloir, M.; Bastide, J.; Kiss, R.; Delfourne, E.
Synthesis and Cytotoxic Evaluation of Analogues of the Marine Pyrido-
acridine Amphimedine, Bioorg. Med. Chem. 2002, 10, 2845-2853; (b)
Matsumoto, S. S.; Sidford, M. H.; Holden, J. A.; Barrows, L. R.; Copp, B.
R. Mechanism of action studies of cytotoxic marine alkaloids: ascidide-
min exhibits thiol-dependent oxidative DNA cleavage, Tetrahedron
Lett. 2000, 41, 1667-1670; (c) Alvarez, M.; Feliu, L.; Ajana, W.; Joule, J.
A.; Fernandez-Puentes, J. L. Synthesis of Ascididemine and an Isomer,
Eur. J. Org. Chem. 2000, 2000, 849-855; (d) Cuerva, J. M.; Cárdenas, D.
J.; Echavarren, A. M. New synthesis of pyridoacridines based on an in-
tramolecular aza-Diels–Alder reaction followed by an unprecedented
rearrangement, Chem. Commun. 1999, 1721-1722; (e) Echavarren, A.
M.; Stille, J. K. Total Synthesis of Amphimedine, J. Am. Chem. Soc. 1988,
110, 4051-4053.
(a) Nakahara, S.; Kubo, A. Total Synthesis of Styelsamine C, and Formal
Synthesis of Norsegoline, Heterocycles 2005, 65, 1925–1929; (b) Naka-
hara, S.; Kubo, A. TOTAL SYNTHESIS OF STYELSAMINE C, A CYTOTOXIC
FUSED TETRACYCLIC AROMATIC ALKALOID, Heterocycles 2004, 35,
2017-2018; (c) Alajarín, M.; Vidal, A.; Ortín, M.-M.; Tovar, F. Intramo-
lecular [4 + 2] Cycloaddition Reactions of Ketenimines: A New Synthe-
sis of Benz[b]acridines, Synthesis 2002, 2002, 2393-2398; (d) Kitahara
Y.; Onikura H; Kubo A. Total Synthesis of Norsegoline, Nat. Prod. Lett.,
1993, 2, 159-162.
(a) Khalil, I. M.; Barker, D.; Copp, B. R. Bioinspired Syntheses of the
Pyridoacridine Marine Alkaloids Demethyldeoxyamphimedine, Deoxy-
amphimedine, and Amphimedine, J. Org. Chem. 2016, 81, 282-289; (b)
Skyler, D.; Heathcock, C. H. A Simple Biomimetic Synthesis of Styelsa-
mine B, Org. Lett. 2001, 3, 4323-4324; (c) Gellerman, G.; Rudi, A.; Kash-
man, Y. Two Step Biomimetic Total Synthesis of Eilatin, Tetrahedron
Lett. 1993, 34, 1823; (d) Molinski, T. F. Marine Pyridoacridine Alkaloids:
Structure, Synthesis, and Biological Chemistry, Chem. Rev. 1993, 93,
1825.
Experimental
In a 10 mL Schlenk tube, N-biarene (1 mmol, 1 equiv), Pd cata-
lyst (0.1 mmol, 10 mol%), 1,10-phenanthroline (0.2 mmol, 20
mol%) and Mo(CO)6 (1 mmol, 1 equiv) was dissolved in DCE (2 ml)
under nitrogen atmosphere. The solution was allowed to be heated
at 120 °C for 3-12 hours. After complete conversion of starting ma-
terial, the solvent was removed. Purification was achieved by col-
umn chromatography on silica gel using PE/EA as the eluent to give
the corresponding pyridoacridine.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
This project is financially supported by National Key Research
and Development Program of China (No. 2018YFC0310900), Na-
tional Natural Science Foundation of China (No. 81903499,
41729002), Innovative Research Team of High-Level Local Universi-
ties in Shanghai (No. SSMU-ZLCX20180702).
References
(a) Joule, J. A.; Alvarez, M. Pyridoacridines in the 21st Century, Eur. J.
Org. Chem. 2019, 2019, 5043-5072; (b) Plodek, A.; Bracher, F. New Per-
spectives in the Chemistry of Marine Pyridoacridine Alkaloids, Mar.
Drugs 2016, 14, 26; (c) Delfourne, E.; Bastide, J. Marine Pyridoacri-
dineAlkaloids and Synthetic Analogues as AntitumorAgents, Med Res
Rev 2003, 23, 234-252.
(a) Ibrahim, S. R.; Mohamed, G. A. Marine Pyridoacridine Alkaloids:Bi-
osynthesis and Biological Activities, Chem. Biodivers 2016, 13, 37-47;
(b) Sandjo, L. P.; Kuete, V.; Biavatti, M. W. Pyridoacridine alkaloids of
marine origin: NMR and MS spectral data, synthesis, biosynthesis and
biological activity, J. Org. Chem. 2015, 11, 1667-1699; (c) Tadeusz, Pyr-
idoacridine Alkaloids: Structure, Synthesis, and Biological Chemistry
Chem. Rev. 1993, 1825-1838.
(a) Carstens, J.; Heinrich, M. R.; Steglich, W. Studies on the synthesis
and biosynthesis of the fungal alkaloid necatorone, Tetrahedron Lett.
2013, 54, 5445-5447; (b) Heald, R. A.; Modi, C.; Cookson, J. C.;
Hutchinson, I.; Laughton, C. A.; Gowan, S. M.; Kelland, L. R; Stevens M.
F. G. Antitumor Polycyclic Acridines. 8.1 Synthesis and Telomerase-In-
hibitory Activity of Methylated Pentacyclic Acridinium Salts, J. Med.
Chem. 2002, 45, 590-597; (c) Klamann, J. D.; Fugmann, B.; Steglich, W.
ALKALOIDAL PIGMENTS FROM LACTARIUS NECATOR AND L. ATROVI-
RIDIS, Phytochemisry 1989, 24, 3519-3522. (d) Fugmann, B.; Steffan, B.;
Steglich, W. NECATORONE, AN ALKALOIDAL PIGMENT FROM THE
GILLED TOADSTOOL LACTARIUS NECATOR (AGARICALES), Tetrahedron
(a) Usman, M.; Hu, X.-D.; Liu, W.-B. Recent Advances and Perspectives
in the Synthesis and Applications of Tetrahydrocarbazol-4-ones, Chin.
J. Chem. 2020, 38, 737-752; (b) Ferretti, F.; Ramadan, D. R.; Ragaini, F.
Transition Metal Catalyzed Reductive Cyclization Reactions of Ni-
troarenes and Nitroalkenes, ChemCatChem 2019, 11, 4450-4488.
(a) Shi, L; Wen, M; Li F. Palladium-Catalyzed Tandem Carbonylative
Aza-Wacker-Type Cyclization of Nucleophile Tethered Alkene to Ac-
cess Fused N-Heterocycles, Chin. J. Chem. 2020, 39, 317-322; (b) Ford,
Chin. J. Chem. 2021, 39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH