UPDATES
Wen Dai et al.
References
mass transfer rates, this hazard can be minimized or
prevented effectively which makes the procedure
safe.
[1] a) R. Bentley, Chem. Soc. Rev. 2005, 34, 609–624;
b) M. C. CarreÇo, G. Hernµndez-Torres, M. Ribagorda,
A. Urbano, Chem. Commun. 2009, 6129–6144; c) I.
Fernµndez, N. Khiar, Chem. Rev. 2003, 103, 3651–3706;
In summary, it was first determined that a continu-
ous-flow microreactor could be used for the asymmet-
ric sulfoxidation catalyzed by a biomimetic manga-
nese complex to afford the corresponding sulfoxides
with almost the same level in yield and enantioselec-
tivity as the batch system. Additionally, the asymmet-
ric sulfoxidation conducted in a continuous-flow mi-
croreactor could allow shorter reaction times and
lower catalyst loading than its batchwise counterpart.
Finally, scale-up of the asymmetric sulfoxidation
under the current microreactor system is facilitated.
The current continuous-flow microreactor system is
being extended to other enantioselective reactions.
´
´
d) E. b. Wojaczynska, J. Wojaczynski, Chem. Rev. 2010,
110, 4303–4356; e) M. Mellah, A. Voituriez, E. Schulz,
Chem. Rev. 2007, 107, 5133–5209; f) H. Pellissier, Tetra-
hedron 2007, 63, 1297–1330.
[2] a) K. A. Stingl, K. M. Weiß, S. B. Tsogoeva, Tetrahedron
2012, 68, 8493–8501; b) P. Lindberg, A. Brändstrçm, B.
Wallmark, H. Mattsson, L. Rikner, K. J. Hoffmann,
Med. Res. Rev. 1990, 10, 1–54.
ˇ
´
[3] a) S. Liao, I. Coric, Q. Wang, B. List, J. Am. Chem. Soc.
2012, 134, 10765–10768; b) G. E. OꢀMahony, A. Ford,
A. R. Maguire, J. Org. Chem. 2012, 77, 3288–3296; c) J.
Legros, C. Bolm, Angew. Chem. 2004, 116, 4321–4324;
Angew. Chem. Int. Ed. 2004, 43, 4225–4228; d) K. P. Bry-
liakov, E. P. Talsi, Angew. Chem. 2004, 116, 5340–5342;
Angew. Chem. Int. Ed. 2004, 43, 5228–5230; e) H.
Egami, T. Katsuki, J. Am. Chem. Soc. 2007, 129, 8940–
8941; f) J. Fujisaki, K. Matsumoto, K. Matsumoto, T.
Katsuki, J. Am. Chem. Soc. 2011, 133, 56–61; g) T. Ya-
maguchi, K. Matsumoto, B. Saito, T. Katsuki, Angew.
Chem. 2007, 119, 4813–4815; Angew. Chem. Int. Ed.
2007, 46, 4729–4731.
Experimental Section
General Procedure
The asymmetric sulfoxidation was conducted in a 1-mL re-
actor made of PTFE (polytetrafluoroethylene) tubing
(0.8 mm inner diameter, 1989 mm length).The L1
(0.0014 mmol, 0.67 mg) and Mn(OTf)2 (0.0014 mmol,
0.50 mg) were added to 0.3 mL mixed solvent of CH3CN
and i-PrOH (3:7, v/v) and the mixture was stirred at room
temperature for 8 h. To the solution of manganese complex
was directly added substrate (0.4 mmol) and 0.7 mL mixed
solvent of CH3CN and i-PrOH (3:7, v/v) and the solution
was introduced at one inlet at a flow rate of 125 mL·minÀ1,
while 45% H2O2 (60.4 mg, 0.8 mmol) which was diluted with
1 mL mixed solvent of CH3CN and i-PrOH (3:7, v/v) was in-
troduced from other inlet at the same flow rate. Total
output was 250 mL·minÀ1 (4 min of residence time). Then
the two solutions were combined in a T-mixer. The T-mixer
and microreactor were cooled to À208C in a refrigerator.
The reaction mixture was collected, quenched with 10%
aqueous Na2S2O3 (4 mL) and extracted with EtOAc
(10 mL3). The organic layer was combined and washed
with a saturated aqueous solution of NaHCO3 (8 mL) and
brine, dried over MgSO4 and concentrated at reduced pres-
sure. The residue was purified by silica gel column chroma-
tography to afford the corresponding sulfoxide.
[4] a) P. Odedra, P. H. Seeberger, Angew. Chem. 2009, 121,
2737–2740; Angew. Chem. Int. Ed. 2009, 48, 2699–2702;
b) T. Nol, S. Kuhn, A. J. Musacchio, K. F. Jensen, S. L.
Buchwald, Angew. Chem. 2011, 123, 6065–6068; Angew.
Chem. Int. Ed. 2011, 50, 5943–5946; c) S. Newton, S. V.
Ley, E. C. ArcØ, D. M. Grainger, Adv. Synth. Catal.
2012, 354, 1805–1812; d) Y. Tomida, A. Nagaki, J.-i.
Yoshida, J. Am. Chem. Soc. 2011, 133, 3744–3747; e) A.
Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki, J. i.
Yoshida, Angew. Chem. 2012, 124, 3299–3302; Angew.
Chem. Int. Ed. 2012, 51, 3245–3248; f) X. Y. Mak, P.
Laurino, P. H. Seeberger, Beilstein J. Org. Chem. 2009, 5,
19; g) S. Fritzsche, S. Ohla, P. Glaser, D. S. Giera, M.
Sickert, C. Schneider, D. Belder, Angew. Chem. 2011,
123, 9639–9642; Angew. Chem. Int. Ed. 2011, 50, 9467–
9470; h) M. Neumann, K. Zeitler, Org. Lett. 2012, 14,
2658–2661; i) J. P. McMullen, M. T. Stone, S. L. Buch-
wald, K. F. Jensen, Angew. Chem. 2010, 122, 7230–7234;
Angew. Chem. Int. Ed. 2010, 49, 7076–7080; j) T. Haya-
shi, S. Kikuchi, Y. Asano, Y. Endo, T. Yamada, Org. Pro-
cess Res. Dev. 2012, 16, 1235–1240; k) D. Zhao, K. Ding,
ACS Catal. 2013, 3, 928–944; l) W. Shu, S. L. Buchwald,
Angew. Chem. 2012, 124, 5451–5454; Angew. Chem. Int.
Ed. 2012, 51, 5355–5358; m) D. Webb, T. F. Jamison,
Chem. Sci. 2010, 1, 675–680; n) L. Shi, X. Wang, C. A.
Sandoval, Z. Wang, H. Li, J. Wu, L. Yu, K. Ding, Chem.
Eur. J. 2009, 15, 9855–9867; o) A. J. Sandee, D. G. Petra,
J. N. Reek, P. C. Kamer, P. W. van Leeuwen, Chem. Eur.
J. 2001, 7, 1202–1208; p) M. A. Pericas, C. I. Herrerias,
L. Sola, Adv. Synth. Catal. 2008, 350, 927–932; q) L.
Osorio-Planes, C. Rodríguez-Escrich, M. A. Pericàs,
Org. Lett. 2012, 14, 1816–1819; r) S. B. Ötvçs, I. M.
Mµndity, F. Fülçp, ChemSusChem 2012, 5, 266–269; s) T.
Tsubogo, Y. Yamashita, S. Kobayashi, Chem. Eur. J.
2012, 18, 13624–13628; t) Y. Su, K. Kuijpers, V. Hessel,
Acknowledgements
This work was financially supported by the NSFC (21502187,
21225627) and the dedicated grant for new technology of
methanol conversion from Dalian Institute of Chemical and
Physics, Chinese Academy of Science is gratefully acknowl-
edged.
670
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2016, 358, 667 – 671