Programmable Oligomers for Minor Groove DNA Recognition
A R T I C L E S
Figure 2. Postulated hydrogen-bonding models for the 1:1 polyamide-DNA complexes with their matched sequence and their ball-and-stick representations.
(a) Im-Hz-Py-Py-γ-Im-Py-Py-Py-â-Dp (1), (b) No-Hz-Py-Py-γ-Im-Py-Py-Py-â-Dp (2), and (c) Ct-Hz-Py-Py-γ-Im-Py-Py-Py-â-Dp (3).
groove floor that is sterically accommodated in the cleft of the
T‚A base pair, preferring to lie over T, not A.5 These pairing
rules have proven useful for programmed recognition of a broad
repertoire of DNA sequences; however, the hydroxypyrrole ring
system has proven to be unstable over time and in the presence
of acid, further prompting our search for new T‚A/A‚T
recognition elements. In addition, sequence-dependent changes
in the microstructure of DNA (intrinsic minor groove width,
minor groove flexibility, and inherent DNA curvature)7a-k
combined with structural and conformational changes among
polyamides make the targeting of certain sequences less than
optimal, leading us to explore whether other novel heterocyclic
recognition elements could be discovered for use in DNA groove
recognition within the unsymmetrical pairing paradigm.7l,8-10
Furthermore, from a medicinal chemistry point of view, a
broader tool kit of sequence-specific recognition elements for
DNA beyond polyamides would be useful as our artificial
transcription factor program moves from cell culture11 to small
animal studies.
We recently reported that the benzimidazole ring can be an
effective platform for the development of modular paired
recognition elements for the minor groove of DNA.9,10 The
benzimidazole 6-5 bicyclic ring structure, though having
slightly different curvature from the classic five-membered
pyrrole-carboxamides, presents an “inside edge” with a similar
atomic readout to the DNA minor groove floor, effectively
mimicking Py, Im, and Hp. We demonstrated that the imida-
zopyridine/pyrrole pair Ip/Py distinguishes G‚C from C‚G and
the hydroxybenzimidazole/pyrrole pair Hz/Py distinguishes T‚
A from A‚T, providing a solution to the unanticipated hydroxy-
pyrrole instability limitation.9,10 The question arises whether this
second generation solution to DNA recognition can be elabo-
rated further, deleting incrementally almost all carboxamide
linkages in the backbone of the hairpin motif.12
We report here a new set of heterocycle dimer pairs,12 which
represents a step from single base-pair recognition toward a two
letter approach to molecular recognition of the minor groove
of DNA (Figure 1). We move from single letters to syllables.
New heterocycles were designed by combining the T-specific
hydroxybenzimidazole (Hz) with oxazole (No) rings and
chlorothiophene (Ct) caps8 to afford the recognition elements
No-Hz and Ct-Hz, respectively (Figure 1). Quantitative
DNase I footprinting titrations were used to determine DNA
binding affinities of hairpin oligomers containing the No-Hz
and Ct-Hz dimers paired with Py-Py dimer for each of the
four Watson-Crick bases (Figure 2). When positioned at the
termini of hairpin polyamides, the No-Hz/Py-Py and Ct-
(7) (a) Hays, F. A.; Teegarden, A.; Jones, Z. J. R.; Harms, M.; Raup, D.;
Watson, J.; Cavaliere, E.; Shing Ho, P. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 7157-7162. (b) Beveridge, D. L.; Barreiro, G.; Byun, K. S.; Case,
D. A.; Cheatham, T. E., 3rd; Dixit, S. B.; Giudice, E.; Lankas, F.; Lavery,
R.; Maddocks, J. H.; Osman, R.; Seibert, E.; Sklenar, H.; Stoll, G.; Thayer,
K. M.; Varnai, P.; Young, M. A. Biophys. J. 2004, 87, 3799-3813. (c)
Dixit, S. B.; Beveridge, D. L.; Case, D. A.; Cheatham, T. E., 3rd; Giudice,
E.; Lankas, F.; Lavery, R.; Maddocks, J. H.; Osman, R.; Sklenar, H.; Thayer,
K. M.; Varnai, P. Biophys. J. 2005, 89, 3721-3740. (d) Wu, H.; Crothers,
D. M. Nature 1984, 308, 509. (e) Steitz, T. A. Annu. ReV. Biophys. 1990,
23, 205. (f) Goodsell, D. S.; Kopka, M. L.; Cascio, D.; Dickerson, R. E.
Proc. Natl. Sci. U.S.A. 1993, 90, 2930. (g) Paolella, D. N.; Palmer, R.;
Schepartz, A. Science 1994, 264, 1130. (h) Kahn, J. D.; Yun, E.; Crothers,
D. M. Nature 1994, 368 163. (i) Geierstanger, B. H.; Wemmer, D. E. Annu.
ReV. Biochem. 1995, 24, 463. (j) Hansen, M. R.; Hurley, L. H. Acc. Chem.
Res. 1996, 29, 249. (k) Turner, J. M.; Swalley, S. E.; Baird, E. E.; Dervan,
P. B. J. Am. Chem. Soc. 1998, 120, 6219-6226. (l) Marques, M. A.; Doss,
R. M.; Urbach, A. R.; Dervan, P. B. HelV. Chim. Acta 2002, 85, 4485-
4517.
(8) Foister, S.; Marques, M. A.; Doss, R. M.; Dervan, P. B. Bioorg. Med. Chem.
2003, 11, 4333-4340.
(11) For downregulation of an endogenous gene in cell culture by polyamides
see: Olenyuk, B. Z.; Zhang, G.; Klco, J. M.; Nickols, N. G.; Kaelin, W.
G., Jr.; Dervan, P. B. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16768-
16773.
(12) Heterocycle pair refers to cofacial stack (noncovalent interaction), whereas
dimer refers to two covalently attached heterocycles.
(9) Briehn, C. A.; Weyermann, P.; Dervan, P. B. Chem.-Eur. J. 2003, 9, 2110-
2122.
(10) (a) Renneberg, D.; Dervan, P. B. J. Am. Chem. Soc. 2003, 125, 5707-
5716. (b) Marques, M. A.; Doss, R. M.; Foister, S.; Dervan, P. B. J. Am.
Chem. Soc. 2004, 126, 10339-10349.
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 9075