Page 11 of 13
The Journal of Organic Chemistry
Normalization Analysis. Angew. Chem. Int. Ed. 2019, 58,
1018910193.
4) (a) McMullen, J. P.; Jensen, K. F. Integrated Microreactors for
Reaction Automation: New Approaches to Reaction Development.
Annu. Rev. Anal. Chem. 2010, 3, 1942; (b) Hartman, R. L.; McMullen,
J. P.; Jensen, K. F. Deciding Whether To Go with the Flow: Evaluating
the Merits of Flow Reactors for Synthesis. Angew. Chem. Int. Ed. 2011,
50, 75027519; (c) Newman, S. G.; Jensen, K. F. The Role of Flow in
Green Chemistry and Engineering. Green Chem. 2013, 15, 14561472;
1179611893; (b) Pastre, J. C.; Browne, D. L.; Ley, S. V. Flow
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Chemistry Syntheses of Natural Products. Chem. Soc. Rev. 2013, 42,
88498869; (c) Newton, S.; Carter, C. F.; Pearson, C. M.; Alves, L. D.;
Lange, H.; Thansandote, P.; Ley, S. V. Accelerating Spirocyclic
Polyketide Synthesis using Flow Chemistry. Angew. Chem. Int. Ed.
2014, 53, 49154920; (d) Cole, K. P.; Groh, J. M.; Johnson, M. D.;
Burcham, C. L.; Campbell, B. M.; Diseroad, W. D.; Heller, M. R.;
Howell, J. R.; Kallman, N. J.; Koenig, T. M.; May, S. A.; Miller, R. D.;
Mitchell, D.; Myers, D. P.; Myers, S. S.; Phillips, J. L.; Polster, C. S.;
White, T. D.; Cashman, J.; Hurley, D.; Moylan, R.; Sheehan, P.;
Spencer, R. D.; Desmond, K.; Desmond, P.; Gowran, O. Kilogram-
Scale Prexasertib Monolactate Monohydrate Synthesis Under
Continuous-Flow CGMP Conditions. Science 2017, 356, 11441150;
(e) K. Kashani, S.; Sullivan, R. J.; Andersen, M.; Newman, S. G.
Overcoming Solid Handling Issues in Continuous Flow Substitution
Reactions Through Ionic Liquid Formation. Green Chem. 2018, 20,
17481753; (f) Russell, M. G.; Jamison, T. F. Seven-Step Continuous
Flow Synthesis of Linezolid Without Intermediate Purification. Angew.
Chem. Int. Ed. 2019, 58, 76787681.
(
(
d) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Organic
Synthesis: March of the Machines. Angew. Chem. Int. Ed. 2015, 54,
4493464.
5) Valera, F. E.; Quaranta, M.; Moran, A.; Blacker, J.; Armstrong,
3
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
A.; Cabral, J. T.; Blackmond, D. G. The Flow’s the Thing…︁︁O Is It?
Assessing the Merits of Homogeneous Reactions in Flask and Flow.
Angew. Chem. Int. Ed. 2010, 49, 24782485.
(6) For example: (a) McMullen, J. P.; Jensen, K. F. Rapid
Determination of Reaction Kinetics with an Automated Microfluidic
System. Org. Process Res. Dev. 2011, 15, 398407; (b) Gholamipour-
Shirazi, A.; Rolando, C. Alkylation of Substituted Benzoic Acids in a
Continuous Flow Microfluidic Microreactor: Kinetics and Linear Free
Energy Relationships. Org. Process Res. Dev. 2012, 16, 811818; (c)
Roberge, D. M.; Noti, C.; Irle, E.; Eyholzer, M.; Rittiner, B.; Penn, G.;
Sedelmeier, G.; Schenkel, B. Control of Hazardous Processes in Flow:
Synthesis of 2-Nitroethanol. J. Flow Chem. 2014, 4, 2634; (d) Hone,
C. A.; Boyd, A.; O'Kearney-McMullan, A.; Bourne, R. A.; Muller, F.
L. Definitive Screening Designs for Multistep Kinetic Models in Flow.
React. Chem. Eng. 2019, 4, 15651570.
(10) (a) Vural Gursel, I.; Noel, T.; Wang, Q.; Hessel, V.
Separation/Recycling Methods for Homogeneous Transition Metal
Catalysts in Continuous Flow. Green Chem. 2015, 17, 20122026; (b)
Sullivan, R. J.; Newman, S. G. Chiral Auxiliary Recycling in
Continuous Flow: Automated Recovery and Reuse of Oppolzer's
Sultam. Chem. Sci. 2018, 9, 21302134.
(11) For examples of reactions performed in discrete slugs or
droplets see: (a) Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in
Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 2006, 45,
73367356; (b) Sesen, M.; Alan, T.; Neild, A. Droplet Control
Technologies for Microfluidic High Throughput Screening (μHTS).
Lab Chip 2017, 17, 23722394; (c) Kaminski, T. S.; Garstecki, P.
Controlled Droplet Microfluidic Systems for Multistep Chemical and
Biological Assays. Chem. Soc. Rev. 2017, 46, 62106226; (d) Isbrandt,
E. S.; Sullivan, R. J.; Newman, S. G. High Throughput Strategies for
the Discovery and Optimization of Catalytic Reactions. Angew. Chem.
Int. Ed. 2019, 58, 71807191; (f) Candoni, N.; Grossier, R.; Lagaize,
M.; Veesler, S. Advances in the Use of Microfluidics to Study
Crystallization Fundamentals. Annu. Rev. Chem. Biomol. 2019, 10,
5983; (g) Hwang, Y.-J.; Coley, C. W.; Abolhasani, M.; Marzinzik, A.
L.; Koch, G.; Spanka, C.; Lehmann, H.; Jensen, K. F. A Segmented
Fflow Platform for On-Demand Medicinal Chemistry and Compound
Synthesis in Oscillating Droplets. Chem. Commun. 2017, 53,
66496652.
(7) (a) Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts,
P.; Dallin, P.; Girkin, J. M. Improved Method for Kinetic Studies in
Microreactors Using Flow Manipulation and Noninvasive Raman
Spectrometry. J. Am. Chem. Soc. 2011, 133, 36013608; (b) Moore, J.
S.; Jensen, K. F. “Batch” Kinetics in Flow: Online IR Analysis and
Continuous Control. Angew. Chem. Int. Ed. 2014, 53, 470473; (c)
Schwolow, S.; Braun, F.; Rädle, M.; Kockmann, N.; Röder, T. Fast and
Efficient Acquisition of Kinetic Data in Microreactors Using In-Line
Raman Analysis. Org. Process Res. Dev. 2015, 19, 12861292; (d)
Durand, T.; Henry, C.; Bolien, D.; Harrowven, D. C.; Bloodworth, S.;
Franck, X.; Whitby, R. J. Thermolysis of 1,3-dioxin-4-ones: fast
generation of kinetic data using in-line analysis under flow. React.
Chem. Eng. 2016, 1, 8289; (e) Hone, C. A.; Holmes, N.; Akien, G. R.;
Bourne, R. A.; Muller, F. L. Rapid Multistep Kinetic Model Generation
From Transient Flow Data. React. Chem. Eng. 2017, 2, 103108; (f)
Aroh, K. C.; Jensen, K. F. Efficient Kinetic Experiments in Continuous
Flow Microreactors. React. Chem. Eng. 2018, 3, 94101.
(12) An initial version of this work was deposited in ChemRxiv on
Oct 21, 2019, Sullivan, R. J.; Newman, S. G. Reaction Cycling for
Efficient Kinetic Analysis in Flow. ChemRxiv 2019. Preprint.
https://doi.org/10.26434/chemrxiv.10009013.v1.
(
8) (a) Reizman, B. J.; Jensen, K. F. Feedback in Flow for
Accelerated Reaction Development. Acc. Chem. Res. 2016, 49,
7861796; (b) Mascia, S.; Heider, P. L.; Zhang, H.; Lakerveld, R.;
(13) Only 7 ports and 6 positions are needed. Any selector valve with
1
≥7-ports, 6-positions can be substituted by fabrication of a suitable
rotor. See Figure S4 in the supporting information.
Benyahia, B.; Barton, P. I.; Braatz, R. D.; Cooney, C. L.; Evans, J. M.
B.; Jamison, T. F.; Jensen, K. F.; Myerson, A. S.; Trout, B. L. End-to-
End Continuous Manufacturing of Pharmaceuticals: Integrated
Synthesis, Purification, and Final Dosage Formation. Angew. Chem.
Int. Ed. 2013, 52, 1235912363; (c) Adamo, A.; Beingessner, R. L.;
Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J.-C.
M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.;
Weeranoppanant, N.; Wong, S. Y.; Zhang, P. On-Demand Continuous-
Flow Production of Pharmaceuticals in a Compact, Reconfigurable
System. Science 2016, 352, 6167; (d) Perera, D.; Tucker, J. W.;
Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.;
Sach, N. W. A Platform for Automated Nanomole-Scale Reaction
Screening and Micromole-Scale Synthesis in Flow. Science 2018, 359,
(
14) A custom rotor for the selector valve was purchased from Vici
Valco (~$100 USD).
15) Price, G. A.; Mallik, D.; Organ, M. G. Process Analytical Tools
(
for Flow Analysis: A Perspective. J. Flow Chem. 2017, 7, 8286.
(16) (a) Zheng, B.; Ismagilov, R. F. A Microfluidic Approach for
Screening Submicroliter Volumes against Multiple Reagents by Using
Preformed Arrays of Nanoliter Plugs in
Liquid/Liquid/Gas Flow. Angew. Chem. Int. Ed. 2005, 44, 25202523;
b) Chen, D. L.; Ismagilov, R. F. Microfluidic Cartridges Preloaded
a
Three-Phase
(
with Nanoliter Plugs of Reagents: An Alternative to 96-Well Plates for
Screening. Curr. Opin. Chem. Biol. 2006, 10, 226231.
4
29–434; (e) Coley, C. W.; Thomas, D. A.; Lummiss, J. A. M.;
(17) Extremely fast reactions are ideally suited for traditional steady
state flow kinetics experiments, since the time inefficiencies of that
strategy are not problematic when investigating reactions with
incredibly short timescales, and therefore we believe these are best
considered complimentary tools.
(18) Reaction slugs used were 300 μL (≈ 1.5 m long in the 0.5 mm
ID reactor coils) and were sampled from the center of the slug, such
that concerns over solvent loss to the gaseous carrier phase or reaction
acceleration at droplet interfaces were not relevant.
Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.;
Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti,
J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K. F. A Robotic
Platform for Flow Synthesis of Organic Compounds Informed by AI
Planning. Science 2019, 365, eaax1566.
(9) (a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H.
The Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117,
ACS Paragon Plus Environment