A. G. Cook et al. / Carbohydrate Research 360 (2012) 78–83
83
References
does not exhibit liquid crystalline behaviour and melts directly into
the isotropic phase between 143 and 145 °C.43 Thus, the nematic
behaviour of the conventional calamitic symmetric dimer has been
extinguished while the tendency of the sugar-based symmetric di-
mer to crystallise has been inhibited in the non-symmetric dimer.
The injection of smectic behaviour is presumably a consequence
of the incompatibility of the two mesogenic units in 1. This cannot
give rise to a monolayer smectic A phase, however, as there exists a
mismatch in the cross-sectional areas of the three structural com-
ponents, that is, the azobenzene-based mesogenic group, the sugar
and the alkyl spacer. Thus, to fill space effectively the azobenzene-
based unit must overlap with the alkyl spacer and this is consistent
with the smectic periodicity measured using X-ray diffraction. The
smectic arrangement, therefore, consists of a highly interdigitated
arrangement with the sugar groups on the outside of the layer and
the alkyl spacer and the azobenzene-based mesogenic overlapping
in the centre of the layer (see Fig. 4). This overlap between the aro-
matic and alkyl groups is unfavourable and in conventional dimers
drives the formation of smectic phases.32 Presumably the hydrogen
bonding between the sugar groups overcomes these unfavourable
interactions and lamellar-like behaviour results from the matching
of the cross-sectional areas of the sugar region and the alkyl-aro-
matic region.
1. Goodby, J. W.; Saez, I. M.; Cowling, S. J.; Gasowska, J. S.; MacDonald, R. A.; Sia,
S.; Watson, P.; Toyne, K. J.; Hird, M.; Lewis, R. A.; Lee, S. E.; Vaschenko, V. Liq.
Cryst. 2009, 36, 567–605.
2. Brooks, N. J.; Hamid, H. A. A.; Hashim, R.; Heidelberg, T.; Seddon, J. M.; Conn, C.
E.; Husseini, S. M. M.; Zahid, N. I.; Hussen, R. S. D. Liq. Cryst. 2011, 38, 1725–
1734.
3. Hashim, R.; Sugimura, A.; Minamikawa, H.; Heidelberg, T. Liq. Cryst. 2012, 39,
1–17.
4. Goodby, J. W.; Gortz, V.; Cowling, S. J.; Mackenzie, G.; Martin, P.; Plusquellec,
D.; Benvegnu, T.; Boullanger, P.; Lafont, D.; Queneau, Y.; Chambert, S.;
Fitremann, J. Chem. Soc. Rev. 2007, 36, 1971–2032.
5. Jewell, S. A. Liq. Cryst. 2011, 38, 1699–1714.
6. Goodby, J. W. Liq. Cryst. 2011, 38, 1363–1387.
7. Hird, M. Liq. Cryst. 2011, 38, 1467–1493.
8. Imrie, C. T.; Henderson, P. A. Curr. Opin. Colloid Interface Sci. 2002, 7, 298–311.
9. Imrie, C. T.; Henderson, P. A. Chem. Soc. Rev. 2007, 36, 2096–2124.
10. Imrie, C. T.; Henderson, P. A.; Yeap, G. Y. Liq. Cryst. 2009, 36, 755–777.
11. Hogan, J. L.; Imrie, C. T.; Luckhurst, G. R. Liq. Cryst. 1988, 3, 645–650.
12. Attard, G. S.; Date, R. W.; Imrie, C. T.; Luckhurst, G. R.; Roskilly, S. J.; Seddon, J.
M.; Taylor, L. Liq. Cryst. 1994, 16, 529–581.
13. Imrie, C. T. Liq. Cryst. 2006, 33, 1449–1454.
14. Yeap, G. Y.; Hng, T. C.; Yeap, S. Y.; Gorecka, E.; Ito, M. M.; Ueno, K.; Okamoto,
M.; Mahmood, W. A. K.; Imrie, C. T. Liq. Cryst. 2009, 36, 1431–1441.
15. Fletcher, I. D.; Luckhurst, G. R. Liq. Cryst. 1995, 18, 175–183.
16. Date, R. W.; Bruce, D. W. J. Am. Chem. Soc. 2003, 125, 9012–9013.
17. Imrie, C. T.; Lu, Z.; Picken, S. J.; Yildirim, Z. Chem. Commun. 2007, 1245–1247.
18. Abraham, S.; Paul, S.; Narayan, G.; Prasad, S. K.; Rao, D. S. S.; Jayaraman, N.; Das,
S. Adv. Funct. Mater. 2005, 15, 1579–1584.
19. Das, S.; Gophinathan, N.; Abraham, S.; Jayaraman, N.; Singh, M. K.; Prasad, S. K.;
Rao, D. S. S. Adv. Funct. Mater. 2008, 18, 1632–1640.
20. Rachedi, F. A.; Chambert, S.; Ferkous, F.; Queneau, Y.; Cowling, S. J.; Goodby, J.
W. Chem. Commun. 2009, 6355–6357.
4. Conclusions
21. Zhang, B. Y.; Xiao, W. Q.; Cong, Y. H.; Zhang, Y. H. Liq. Cryst. 2007, 34, 1129–
1136.
22. Xiao, W. Q.; Zhang, B. Y.; Cong, Y. H. Chem. Lett. 2007, 36, 938–939.
23. Akiyama, H.; Tanaka, A.; Hiramatsu, H.; Nagasawa, J.; Tamaoki, N. J. Mater.
Chem. 2009, 19, 5956–5963.
24. Tian, M.; Zhang, B.-Y.; Cong, Y.-H.; He, X.-Z.; Chu, H.-S.; Zhang, X.-Y. Liq. Cryst.
2010, 37, 1373–1379.
25. Belaissaoui, A.; Cowling, S. J.; Saez, I. M.; Goodby, J. W. Soft Matter 2010, 6,
1958–1963.
26. Belaissaoui, A.; Saez, I. M.; Cowling, S. J.; Zeng, X.; Goodby, J. W. Chem. Eur. J.
2012, 18, 2366–2373.
27. Yoshizawa, A.; Takahashi, Y.; Terasawa, R.; Chiba, S.; Takahashi, K.; Hazawa,
M.; Kashiwakura, I. Chem. Lett. 2009, 38, 310–311.
28. Stewart, D.; Imrie, C. T. Polymer 1996, 37, 3419–3425.
29. Imrie, C. T.; Karasz, F. E.; Attard, G. S. Macromolecules 1992, 25, 1278–1283.
30. Glen, W. L.; Myers, G. S.; Grant, G. A. J. Chem. Soc. 1951, 2568–2572.
31. Bessodes, M.; Shamsazar, J.; Antonakis, K. Synthesis 1988, 7, 560–562.
32. Date, R. W.; Imrie, C. T.; Luckhurst, G. R.; Seddon, J. M. Liq. Cryst. 1992, 12, 203–
238.
33. Attard, G. S.; Garnet, S.; Hickman, C. G.; Imrie, C. T.; Taylor, L. Liq. Cryst. 1990, 7,
495–508.
34. Chambert, S.; Doutheau, A.; Queneau, Y.; Cowling, S. J.; Goodby, J. W.;
Mackenzie, G. J. Carbohydr. Chem. 2007, 26, 27–39.
35. Goodby, J. W.; Watson, M. J.; Mackenzie, G.; Kelly, S. M.; Bachir, S.; Bault, P.;
Gode, P.; Goethals, G.; Martin, P.; Ronco, G.; Villa, P. Liq. Cryst. 1998, 25, 139–
147.
36. Wolkers, W. F.; Oldenhof, H.; Alberda, M.; Hoekstra, F. A. Biochim. Biophys. Acta
1998, 1379, 83–96.
37. Wolkers, W. F.; Oliver, A. E.; Tablin, F.; Crowe, J. H. Carbohydr. Res. 2004, 339,
1077–1085.
38. Angell, C. A.; Imrie, C. T.; Ingram, M. D. Polym. Int. 1998, 47, 9–15.
39. Ottenhof, M. A.; MacNaughtan, W.; Farhat, I. A. Carbohydr. Res. 2003, 338,
2195–2202.
40. Cook, A. G.; Wardell, J. L.; Imrie, C. T. Chem. Phys. Lipids 2011, 164, 118–124.
41. Coats, A. M.; Hukins, D. W. L.; Imrie, C. T.; Aspden, R. M. J. Microsc. 2003, 211,
63–66.
42. Henderson, P. A.; Cook, A. G.; Imrie, C. T. Liq. Cryst. 2004, 31, 1427–1434.
43. Gouéth, P.; Ramiz, A.; Ronco, G.; Mackenzie, G.; Villa, P. Carbohydr. Res. 1995,
266, 171–189.
The liquid crystalline behaviour of the non-symmetric dimer, 1-
[3-O-(D
-glucopyranos-3-yl)]-8-[(4-methoxyazobenzene-40-oxy)]-
octane, in which a conventional rod-like azobenzene-based meso-
genic unit is attached via a flexible alkyl spacer to a cyclic
monosaccharide has been reported. The dimer exhibits a highly
interdigitated smectic A phase in which the aromatic and alkyl
units overlap. There is no step change in the strength and extent
of hydrogen bonding at the smectic A-isotropic transition implying
that hydrogen bonding, although important in stabilising the layer
arrangement, does not in fact drive the formation of the phase. In-
stead it is presumably the change in the van der Waals interactions
between the molecules at the clearing temperature which destroys
the smectic arrangement while hydrogen bonded aggregates re-
main intact. It is surprising, however, that the entropy change asso-
ciated with the smectic A-isotropic transition is comparable to that
observed for conventional liquid crystal dimers. By comparison, for
other carbohydrate-based liquid crystals40 and ionic liquid crys-
tals44 for which aggregates are thought to persist into the isotropic
phase, the entropy change at the clearing point is very small. The
physical significance of this observation is not clear. The molecular
arrangement within the smectic A layers shown by 1 is stabilised
by the matching of the cross-sectional areas of the sugar region
and the alkyl-aromatic region. If, however, such packing is pre-
vented we anticipate that interfacial curvature will give rise to a
range of novel phase behaviour and this now warrants further
study.
Acknowledgments
J.M.S. is pleased to acknowledge support from the EPSRC Plat-
form Grant EP/G00465X and A.M.F from the Grisolia Program from
Generalitat Valenciana.
44. De Roche, J.; Gordon, C. M.; Imrie, C. T.; Ingram, M. D.; Kennedy, A. R.; Lo Celso,
F.; Triolo, A. Chem. Mater. 2003, 15, 3089–3097.