Asymmetric Conjugate Addition of Acetylacetone to Nitroolefins
5.32 (t, J = 9.5 Hz, 1 H), 5.07 (t, J = 9.7 Hz, 1 H), 4.93 (t, J =
9.3 Hz, 1 H), 4.26 (dd, J = 4.1, 3.9 Hz, 1 H), 4.15 (dd, J = 2.0,
2.3 Hz, 1 H), 3.88 (m, 1 H), 3.28 (br. s, 1 H), 2.50–2.46 (m, 2 H),
2.32 (s, 6 H), 2.04 (s, 6 H), 2.02 (s, 6 H), 1.83 (m, 1 H), 0.96 (d, J
= 6.9 Hz, 3 H), 0.95 (d, J = 6.9 Hz, 3 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 184.0, 170.5, 170.1, 169.8, 83.9, 73.3, 71.3, 68.5, 63.5,
61.9, 59.7, 44.9, 31.5, 20.8, 20.6, 18.1, 18.0 ppm. HRMS (FAB+):
calcd. for C22H38N3O9S [M + 1]+ 520.232877; found 520.232998.
Acknowledgments
We thank the National Natural Science Foundation of China
(20702044), Yunnan Province Government (2008CD064), and Yun-
nan University (Program for Yunnan University Key Young Teach-
ers) for financial support.
[1] For recent general reviews on organocatalysis, see: a) A. Don-
doni, A. Massi, Angew. Chem. Int. Ed. 2008, 47, 4638–4660; b)
D. W. C. MacMillan, Nature 2008, 455, 304–308; c) P. I. Dalko,
Enantioselective Organocatalysis: Reactions and Experimental
Procedures, Wiley-VCH, Weinheim, 2007; d) M. J. Gaunt,
C. C. C. Johansson, A. McNally, N. C. Vo, Drug Discovery To-
day 2007, 12, 8–27; e) B. List, J. W. Yang, Science 2006, 313,
1584–1586; f) A. Berkessel, H. Groger, Asymmetric Organocat-
alysis – From Biomimetic Concepts to Powerful Methods for
Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005; g) P. I.
Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138–5175.
[2] a) F. Peng, Z. Shao, B. Fan, H. Song, G. Li, H. Zhang, J. Org.
Chem. 2008, 73, 5202–5205; b) F. Peng, Z. Shao, X. Pu, H.
Zhang, Adv. Synth. Catal. 2008, 350, 2199–2204.
(4S,5S,6R)-2-(Acetoxymethyl)-6-{3-[(R)-1-(dimethylamino)-3-meth-
ylbutan-2-yl]thioureido}tetrahydro-2H-pyran-3,4,5-triyl Triacetate
(1b): Yield: 420 mg (81%). [α]2D0 = +44.0 (c = 0.5, CHCl3). 1H NMR
(300 MHz, CDCl3): δ = 5.76 (m, 1 H), 5.23 (t, J = 9.4 Hz, 1 H),
5.01 (t, J = 9.6 Hz, 1 H), 4.87 (t, J = 9.4 Hz, 1 H), 4.18 (d, J =
12.3 Hz, 1 H), 4.06 (d, J = 12.4 Hz, 1 H), 3.76 (m, 1 H), 2.63–2.37
(m, 2 H), 2.24 (s, 6 H), 1.99 (s, 3 H), 1.98 (s, 3 H), 1.96 (s, 3 H),
1.94 (s, 3 H), 1.19 (m, 1 H), 0.88 (d, J = 4.5 Hz, 3 H), 0.81 (d, J =
2.5 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 185.1, 170.6,
170.3, 169.9, 169.7, 83.6, 76.6, 73.5, 73.4, 71.3, 68.4, 62.0, 45.1,
31.6, 20.8, 20.7, 20.6, 18.1 ppm. HRMS (FAB+): calcd. for
C22H38N3O9S [M + 1]+ 520.232877; found 520.232996.
[3] S. Hanessian, Z. Shao, J. S. Warrier, Org. Lett. 2006, 8, 4787–
4790.
(4S,5S,6R)-2-(Acetoxymethyl)-6-{3-[(S)-1-(dimethylamino)-4-meth-
ylpentan-2-yl]thioureido}tetrahydro-2H-pyran-3,4,5-triyl Triacetate
(1c): Yield: 426 mg (80%). [α]2D0 = –9.8 (c = 1.0, CHCl3). 1H NMR
(300 MHz, CDCl3): δ = 6.16 (br. s, 1 H), 5.71 (br. s, 1 H), 5.33 (t,
J = 9.5 Hz, 1 H), 5.08 (t, J = 9.7 Hz, 1 H), 4.94 (t, J = 9.5 Hz, 1
H), 4.28 (dd, J = 3.6, 3.4 Hz, 1 H), 4.15 (d, J = 12.3 Hz, 1 H), 3.88
(m, 1 H), 3.53 (br. s, 1 H), 2.57–2.41 (m, 2 H), 2.33 (s, 6 H), 2.08
(s, 3 H), 2.05 (s, 3 H), 2.03 (s, 3 H), 2.02 (s, 3 H), 1.68 (m, 1 H),
1.36–1.22 (m, 2 H), 0.93 (d, J = 6.5 Hz, 3 H), 0.90 (d, J = 6.2 Hz,
3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 185.0, 170.6, 169.8,
168.7, 168.6, 83.8, 73.3, 73.1, 71.3, 68.5, 66.9, 61.9, 53.4, 45.1, 42.5,
24.7, 22.7, 20.7 ppm. HRMS (FAB+): calcd. for C23H40N3O9S [M
+ 1]+ 534.248527; found 534.245652.
[4] For a review, see: F. Peng, Z. Shao, J. Mol. Catal. A 2008, 285,
1–13.
[5] For selected examples, see: a) J. Liu, Z. Yang, Z. Wang, F.
Wang, X. Chen, X. Liu, X. Feng, Z. Su, C. Hu, J. Am. Chem.
Soc. 2008, 130, 5654–5655; b) S. S. V. Ramasastry, K. Al-
bertshofer, N. Utsumi, C. F. Barbas III, Org. Lett. 2008, 10,
1621–1624; c) L. Cheng, X. Han, H. Huang, M. W. Wong, Y.
Lu, Chem. Commun. 2007, 4143–4145.
[6] a) C. Becker, C. Hoben, H. Kunz, Adv. Synth. Catal. 2007, 349,
417–424; b) K. Liu, H. Cui, J. Nie, K. Dong, X. Li, J. Ma, Org.
Lett. 2007, 9, 923–925; c) C. Wang, Z. Zhou, C. Tang, Org.
Lett. 2008, 10, 1707–1710.
[7] For recent reviews on tertiary amine–(thio)urea derivatives, see:
a) S. J. Connon, Chem. Commun. 2008, 2499–2510; b) Y. Take-
moto, H. Miyabe, Chimia 2007, 61, 269–275; c) M. S. Taylor,
E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520–1543.
For other types of thiourea catalysts, see: d) C. Cao, M. Ye, X.
Sun, Y. Tang, Org. Lett. 2006, 8, 2901–2904; e) Y. Cao, Y. Lai,
X. Wang, Y. Li, W. Xiao, Tetrahedron Lett. 2007, 48, 21–24; f)
Y. Chang, J. Yang, J. Dang, Y. Xue, Synlett 2007, 2283–2285;
g) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal.
2005, 347, 1643–1648; h) S. B. Tsogoeva, D. A. Yalalov, M. J.
Hateley, C. Weckbecker, K. Huthmacher, Eur. J. Org. Chem.
2005, 4995–5000.
[8] For recent reviews on the asymmetric conjugate addition of
nitroolefins, see: a) S. B. Tsogoeva, Eur. J. Org. Chem. 2007,
1701–1716; b) D. Almasi, D. A. Alonso, C. Najera, Tetrahe-
dron: Asymmetry 2007, 18, 299–365; c) J. L. Vicario, D. Badia,
L. Carrillo, Synthesis 2007, 2065–2092; d) O. M. Berner, L. Te-
deschi, D. Enders, Eur. J. Org. Chem. 2002, 1877–1894.
[9] For selected examples on organocatalytic asymmetric conju-
gate addition of 1,3-dicarbonyl compounds to nitroolefins, see:
a) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003,
125, 12672–12673; b) H. Li, Y. Wang, L. Tang, L. Deng, J. Am.
Chem. Soc. 2004, 126, 9906–9907; c) J. Wang, H. Li, W. Duan,
L. Zu, W. Wang, Org. Lett. 2005, 7, 4713–4716; d) S. H.
McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367–
6370; e) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M.
Foxman, L. Deng, Angew. Chem. Int. Ed. 2005, 44, 105–109;
f) M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006,
128, 1454–1455; g) J. M. Andres, R. Manzano, R. Pedrosa,
Chem. Eur. J. 2008, 14, 5116–5119; h) J. P. Malerich, K. Hagih-
ara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416–14417;
i) C. Wang, Z. Zhang, X. Dong, X. Wu, Chem. Commun. 2008,
1431–1433; j) X. Li, K. Liu, H. Ma, J. Nie, J. Ma, Synlett 2008,
3242–3246; k) P. Gao, C. Wang, Y. Wu, Z. Zhou, C. Tang, Eur.
(4S,5S,6R)-2-(Acetoxymethyl)-6-{3-[(R)-1-(dimethylamino)-4-meth-
ylpentan-2-yl]thioureido}tetrahydro-2H-pyran-3,4,5-triyl Triacetate
(1d): Yield: 426 mg (80%). [α]2D0 = +41.0 (c = 1.0, CHCl3). 1H NMR
(300 MHz, CDCl3): δ = 5.81 (m, 1 H), 5.33 (t, J = 9.4 Hz, 1 H),
5.08 (t, J = 9.7 Hz, 1 H), 4.96 (t, J = 9.1 Hz, 1 H), 4.28 (dd, J =
4.3, 4.3 Hz, 1 H), 4.12 (d, J = 12.3 Hz, 1 H), 3.86 (m, 1 H), 2.70–
2.18 (m, 8 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.04 (s, 3 H), 2.01 (s, 3
H), 1.69 (m, 1 H), 1.26 (m, 2 H), 0.94 (d, J = 6.4 Hz, 3 H), 0.87
(d, J = 6.8 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 185.4,
170.6, 169.9, 169.7, 83.2, 73.4, 71.2, 68.5, 66.1, 62.0, 52.8, 45.2,
42.6, 24.9, 22.7, 20.7, 20.6 ppm. HRMS (FAB+): calcd. for
C23H40N3O9S [M + 1]+ 534.248527; found 534.245654.
General Procedure for the Asymmetric Conjugate Addition Reaction
of Acetylacetone (4) to Nitroolefins 5 Catalyzed by Catalyst 1a or
1b: Catalyst 1a or 1b (10.4 mg, 0.02 mmol, 10 mol-%) was added
to a vial containing 4 (40 mg, 0.4 mmol) and 5 (0.2 mmol) in dry
THF or toluene (0.6 mL) at room temperature. The resulting mix-
ture was stirred at room temperature, and the reaction was moni-
tored by TLC. The reaction mixture was quenched with 1 aque-
ous HCl solution, extracted with EtOAc, and dried with Na2SO4.
The crude product was purified by flash silica gel chromatography
to give desired adducts 6. The ee values were determined by chiral
HPLC analysis.
Supporting Information (see also the footnote on the first page of
this article): NMR spectroscopic data and chiral HPLC data of 6a–
h.
Eur. J. Org. Chem. 2009, 4622–4626
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4625