PD@MOF-1 AS A CATALYST FOR THE HYDROGENATION OF NITROARENES
7 of 8
The stability of Pd@MOF-1 was further investigated
using recycling experiments, and the results are depicted
in Figure 7. Pd@MOF-1 demonstrated stable recovery by
simple filtration from the reaction mixture. Only a negli-
gible decline (1–3%) in the catalytic activity of
Pd@MOF-1 was observed when the catalyst was used
for five successive cycles in the hydrogenation of
nitrobenzene.
Moreover, the average particle diameter and size dis-
tribution of freshly prepared Pd@MOF-1 catalyst and of
catalyst after the fifth cycle were compared. TEM ana-
lyses of the Pd@MOF-1 catalyst after reuse showed parti-
cle size and size distribution (mean size = 1.41 nm)
similar to those of the freshly prepared catalyst, and no
agglomeration of the used catalyst was observed
REFERENCES
[1] (a)S. F. Cai, H. H. Duan, H. P. Rong, D. S. Wang, L. S. Li,
W. He, Y. D. Li, ACS Catal. 2013, 3, 608. (b)Z. Z. Wei,
J. Wang, S. J. Mao, D. F. Su, H. Y. Jin, Y. H. Wang, F. Xu,
H. R. Li, Y. Wang, ACS Catal. 2015, 5, 4783. (c)M. Orlandi,
D. Brenna, R. Harms, S. Jost, M. Benaglia, Org. Process Res.
Dev. 2016, 22, 430. (d)J. H. Kim, J. H. Park, Y. K. Chung,
K. H. Park, Adv. Synth. Catal. 2012, 354, 2412. (e)Z. C. Ding,
C. Y. Li, J. J. Chen, J. H. Zeng, H. T. Tang, Y. J. Ding,
Z. P. Zhan, Adv. Synth. Catal. 2017, 359, 2280.
[2] (a)R. J. Rahaim, R. E. Maleczka, Org. Lett. 2005, 7, 5087. (b)
A. Corma, P. Serna, P. Concepcion, J. J. Calvino, J. Am. Chem.
Soc. 2008, 130, 8748.
[
3] (a)L. Q. Liu, B. T. Qiao, Z. J. Chen, J. Zhang, Y. Q. Deng,
Chem. Commun. 2009, 653. (b)H. S. Wei, X. Y. Liu,
A. Q. Wang, L. L. Zhang, B. T. Qiao, X. F. Yang, Y. Q. Huang,
S. Miao, J. Y. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634.
(Figure 8). XPS analysis revealed no shift in the binding
[
4] (a)S. Chandrappa, K. Vinaya, T. Ramakrishnappa,
K. S. Rangappa, Synlett 2010, 20, 3019. (b)K. M. Doxsee,
M. Feigel, K. D. Stewart, J. W. Canary, C. B. Knobler,
D. J. Cram, J. Am. Chem. Soc. 1987, 109, 3098. (c)F. A. Khan,
J. Dash, C. Sudheer, R. K. Gupta, Tetrahedron Lett. 2003, 44,
energy of Pd nanoparticles (Table S3). These observations
confirmed that the catalyst was suitably active for up to
five cycles.
To confirm the heterogeneous nature of the
Pd@MOF-1 catalyst, Pd@MOF-1 was removed from the
reaction mixture by simple filtration at a 15% conversion
of nitrobenzene. The filtrate was used for reaction under
similar conditions; however, it showed no further conver-
sion of nitrobenzene. No leaching of Pd atoms in the fil-
trate was verified using ICP-AES analysis (detection limit
of 0.10 ppm).
7783.
[5] A. Corma, C. Gonza´ lez-Arellano, M. Lglesias, F.'l. Sa'nchez,
Appl. Catal. A 2009, 356, 99.
[
[
6] O. Mazaheri, R. J. Kalbasi, RSC Adv. 2015, 5, 34398.
7] (a)R. V. Jagadeesh, G. Wienhofer, F. A. Westerhaus,
A. E. Surkus, M. M. Pohl, H. Junge, K. Junge, M. Beller, Chem.
Commun. 2011, 47, 10972. (b)P. Ryabchuk, K. Junge,
M. Beller, Synthesis 2018, 50, 4369. (c)Y. N. Duan, X. S. Dong,
T. Song, Z. Z. Wang, J. L. Xiao, Y. Z. Yuan, Y. Yang,
ChemSusChem 2019, 12, 4636.
[
8] P. N. Sathishkumar, N. Raveendran, N. S. P. Bhuvanesh,
R. Karvembu, J. Organometal. Chem. 2018, 876, 57.
9] (a)F. A. Westerhaus, I. Sorribes, G. Wienhöfer, K. Junge,
M. Beller, Synlett 2015, 26, 313. (b)Y. N. Duan, T. Song,
X. S. Dong, Y. Yang, Green Chem. 2018, 20, 2821. (c)T. Song,
P. Ren, Y. N. Duan, Z. Z. Wang, X. F. Chen, Y. Yang, Green
Chem. 2018, 20, 4629.
4
| CONCLUSIONS
[
In summary, the general reduction of nitroarenes to the
corresponding amines in good to excellent yields
(76–98%) was achieved using Pd nanoparticles supported
on MOF. This method was easy and exceedingly efficient.
A large range of reducible functional groups was toler-
ated under these reaction conditions. Other notable
advantages of this catalytic system included high isolated
yields, the use of hydrogen as a sustainable source, an
easy handling procedure and the reusability of the
catalyst.
[
[
[
10] J. T. Wang, X. C. Yu, C. Y. Shi, D. J. Lin, J. Li, H. L. Jin,
X. Chen, S. Wang, Adv. Synth. Catal. 2019, 361, 1.
11] J. R. Morse, J. F. Callejas, A. J. Darling, R. E. Schaak, Chem.
Commun. 2017, 53, 4807.
12] (a)B. Tang, W. C. Song, E. C. Yang, X. J. Zhao, RSC Adv. 2016,
7, 1531. (b)K. Shen, L. Chen, J. L. Long, W. Zhong, Y. W. Li,
ACS Catal. 2015, 5, 5264. (c)P. Hester, S. J. Xu, W. Liang,
N. Al-Janabi, R. Vakili, P. Hill, C. A. Muryn, X. B. Chen,
P. A. Martin, X. L. Fan, J. Catal. 2016, 340, 85. (d)Y. Y. Pan,
B. Z. Yuan, Y. W. Li, D. H. He, Chem. Commun. 2010, 46,
ACKNOWLEDGMENTS
The authors acknowledge financial support from the
National Natural Science Foundation of China (21576026
and 21975023).
2280.
[
13] H. L. Liu, L. N. Chang, C. H. Bai, L. Y. Chen, L. Q. R, Y. W. Li,
Angew. Chem. 2016, 55, 5019.
[14] X. D. Chen, K. Shen, D. N. Ding, J. Y. Chen, T. Fan, R. F. Wu,
Y. W. Li, ACS Catal. 2018, 8, 10641.
CONFLICT OF INTEREST
There are no conflicts to declare.
[15] (a)B. Gole, U. Sanyal, P. S. Mukherjee, Chem. Commun. 2015,
1, 4872. (b)B. Gole, U. Sanyal, R. Banerjee, P. S. Mukherjee,
5
Inorg. Chem. 2016, 55, 2345.
ORCID
[16] (a)Y. Luan, Y. Qi, H. Gao, N. N. Zheng, G. Wang, J. Mater.
Chem. A 2014, 2, 20588. (b)J. Zhu, P. C. Wang, M. Lu, Appl.