Table 1 Hydroformylation of vinylarenes using (R)- and (S)-phtabinphos (ligands 1 and 2) and [Rh(µ-OMe)(cod)]2
Conv. (%)
regiod
(%)
ee (%)
Entry
La
Substrateb
PhCH᎐CH2
T /ЊC
P/bar
(t/h)c
(conf )e
1
2
3
4
5
6
7f
1
2
1
1
1
1
1
50
50
40
40
40
40
40
15
15
15
15
15
30
15
78 (15)
99 (21)
30 (36)
53 (115)
89 (23)
25 (69)
17 (16)
75
83
80
66
81
80
80
62 (R)
11 (S)
70 (R)
72 (R)
75 (R)
73 (R)
76 (R)
᎐
PhCH᎐CH2
᎐
PhCH᎐CH2
᎐
p-tBuC6H4CH᎐CH2
᎐
NaphCH᎐CH2
᎐
PhCH᎐CH2
᎐
PhCH᎐CH2
᎐
Reaction conditions: 1.25 × 10Ϫ2 mmol Rh, 2.5 × 10Ϫ2 mmol ligand and 5.0 mmol substrate (substrate/catalyst = 400) in 7.5 ml of toluene;
P(CO)᎐P(H2). a Diphosphite. b Substrates: styrene; 4-tert-butylstyrene, and vinylnaphthalene. c Substrate consumed in the time indicated in paren-
᎐
theses. d Regioselectivity in the branched aldehyde. e Enantiomeric excess of the isomer indicated in parentheses. f 2.5 × 10Ϫ2 mmol Rh, 5.0 × 10Ϫ2
ligand and 45 mmol substrate (substrate/catalyst = 1800) in 4.0 ml of toluene; TOF is 31 hϪ1
.
3 (a) K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano,
T. Horiuchi and H. Takaya, J. Am. Chem. Soc., 1997, 119, 4413;
(b) N. Sakai, S. Mano, K. Nozaki and H. Takaya, J. Am. Chem. Soc.,
1993, 115, 7033.
4 (a) J. E. Babin and G. T. Whitecker, PCT Int. Appl., WO 93/03839,
for Union Carbide, 1993; (b) G. J. H. Buisman, L. A. van der Veen,
A. Klootwijk, W. G. J. Lange, P. C. J. Kamer, P. W. N. M.
van Leeuwen and D. Vogt, Organometallics, 1997, 16, 2929; (c) M.
Diéguez, O. Pagamies, A. Ruiz, S. Castillón and C. Claver, Chem.
Commun., 2000, 1607.
activity as well as in the regioselectivity was observed in the
hydroformylation of 4-tert-butylstyrene with respect to styrene
(entries 4 and 3).
In conclusion, diphosphite 1 provides the first example of a
ligand forming a chiral macrochelate, which produces a fairly
good stereoselective catalyst for asymmetric hydroformylation.
Furthermore, the modular structure of this ligand allows
an easy modification of its stereochemical properties. This
approach is currently under investigation.
5 G. J. H. Buisman, E. J. Vos, P. C. J. Kamer and P. W. N. M.
van Leeuwen, J. Chem. Soc., Dalton Trans., 1995, 409.
6 L. David, D. L. Van Vranken and B. M. Trost, Chem. Rev., 1996, 96,
395.
7 Z. Freixa, E. Martin, S. Gladiali and J. C. Bayón, Appl. Organomet.
Chem., 2000, 14, 66.
8 Selected data: 1 δP (CDCl3) 145.8; 2 δP (CDCl3) 148.6.
9 D. Gleich, R. Schmid and W. A. Herrmann, Organometallics, 1998,
17, 2141.
Acknowledgements
We thank the Spanish MEC (PB98-0913-C02-01) and DGE-
CIRIT of Catalonia for financial support and a scholarship
for Z. F.
10 NMR data: 3 δP (CDCl3, 121.6 MHz) 177.6 (d, JRh-P = 231 Hz). δH
(CDCl3, 300 MHz) Ϫ9.90 (hydride, q br, JP-H = JRh-H = 4Hz).
11 NMR data: 4 δP (CDCl3, 101.3 MHz) 180.6 (P1 phosphite, ddd,
JRh-P1 = 251 Hz, JP2-P1 = 271 Hz, JP3-P1 = 172 Hz); 175.3 (P2 phos-
phite, ddd, JRh-P2 = 237 Hz, JP3-P2 = 109 Hz); 37.7 (P3 phosphine,
ddd, JRh-P3 = 134 Hz). δH (CDCl3, 250 MHz) Ϫ10.25 (hydride,
dddd, J = 13.0 Hz, 6.5 Hz, 2.7 Hz).
12 NMR data: 5 δP (CDCl3, 101.3 MHz) 37.8 (P1 phosphine, ddd,
JRh-P1 = 143 Hz, JP2-P1 = 86 Hz, JP3-P1 = 167 Hz); 40.8 (P2 phos-
phine, ddd, JRh-P2 = 148 Hz, JP3-P2 = 191 Hz); 174.7 (P3 phosphite,
ddd, JRh-P3 = 258 Hz).
References
1 (a) K. Nozaki, in Comprehensive Asymmetric Catalysis, ed. E. N.
Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999, vol. 1,
pp. 381–413; (b) C. Claver and P. W. N. M. van Leeuwen, in Rhodium
Catalyzed Hydroformylation, ed. P. W. N. M. van Leeuwen
and C. Claver, Kluwer Academic Publisher, Dordrecht, 2000,
pp. 107–144.
2 (a) J. K. Stille, H. Su, P. Brechot, G. Parrinello and L. S. Hegedus,
Organometallics, 1991, 10, 1183; (b) G. Consiglio, S. C. A. Nefkens
and A. Borer, Organometallics, 1991, 10, 2046; (c) G. Consiglio, P.
Pino, L. I. Flowers and C. U. Pittman, Jr., J. Chem. Soc., Chem.
Commun., 1983, 612.
13 Z. Freixa, M. M. Pereira, A. A. C. C. Pais and J. C. Bayón, J. Chem.
Soc., Dalton Trans., 1999, 3245.
2068
J. Chem. Soc., Dalton Trans., 2001, 2067–2068