Chemistry of Materials
ARTICLE
polyimide aerogels can be prepared in one step as mesoporous
materials over a wide density range with high porosities, high
surface areas, high modulus, high strength, and high toughness.
Combining the one-step synthesis with mechanical strength,
manageable thermal stability, relatively low thermal conductivity,
and low speed of sound wave propagation render bis-NAD-xx to
be reasonable multifunctional candidates for further investigation
into thermal and acoustic insulation at elevated temperatures.
From a theoretical perspective, bis-NAD-xx emphasize the fact
that nucleation and network growth in organic aerogels is a
complicated process that may not be known a priori, but it has
definite effects on the performance of the materials. It can be
influenced by typical reaction conditions, such as solvent,
temperature, monomer, and catalyst concentration; moreover,
predictability most certainly can be gained through multivariable
optimization studies.
(13) Lee, J. K.; Gould, G. L.; Rhine, W. L. J. SolꢀGel Sci. Technol. 2009,
49, 209–220.
(14) Lorjai, P.; Chaisuwan, T.; Wongkasemjit, S. J. SolꢀGel Sci. Technol.
2009, 52, 56–64.
(15) Lee, J. K.; Gould, G. L. J. SolꢀGel Sci. Technol. 2007, 44,
29–40.
(16) Rhine, W.; Wang, J.; Begag, R. Polyimide Aerogels, Carbon Aerogels,
and Metal Carbide Aerogels and Methods of Making Same, U.S. Patent No.
7,074,880, 2006.
(17) (a) Kawagishi, K.; Saito, H.; Furukawa, H.; Horie, K. Macromol.
Rapid Commun. 2007, 28, 96–100. (b) Meador, M. A. B.; Malow, E. J.; He,
Z. J.; McCorkle, L.; Guo, H.; Nauyen, B. N. Polym. Prepr. (Am. Chem. Soc.,
Div. Polym. Chem.) 2010, 51, 265–266.
(18) Daniel, C.; Giudiee, S.; Guerra, G. Chem. Mater. 2009, 21,
1028–1034.
(19) Goueree, P.; Talbi, H.; Miousse, D.; Tran-van, F.; Dao, L. H.; Lee,
K. H. J. Electrochem. Soc. 2001, 148, A94–A101.
(20) (a) Fischer, F.; Rigacci, A.; Pirard, R.; Berthon-Fabry, S.;
Achard, P. Polymer 2006, 47, 7636–7645. (b) Gavillon, R.; Budtova,
T. Biomacromolecules 2008, 9, 269–277. (c) Surapolchai, W.; Schiraldi,
D. A. Polym. Bull. 2010, 65, 951–960.
’ AUTHOR INFORMATION
Corresponding Authors:
(21) (a) Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh,
A.-M. M. Nano Lett. 2002, 2, 957–960. (b) Zhang, G.; Dass, A.; Rawashdeh,
A.-M. M.; Thomas, J.; Counsil, J. A.; Sotiriou-Leventis, C.; Fabrizio, E. F.;
Ilhan, F.; Vassilaras, P.; Scheiman, D. A.; McCorkle, L.; Palczer, A.; Johnston,
J. C.; Meador, M. A. B.; Leventis, N. J. Non-Cryst. Solids 2004, 350, 152–164.
(c) Leventis, N.; Palczer, A.; McCorkle, L.; Zhang, G.; Sotiriou-Leventis, C.
J. SolꢀGel Sci. Technol. 2005, 35, 99–105. (d) Leventis, N. Acc. Chem. Res.
2007, 40, 874–884. (e) Leventis, N.; Vassilaras, P.; Fabrizio, E. F.; Dass, A.
J. Mater. Chem. 2007, 17, 1502–1508. (f) Leventis, N.; Mulik, S.; Sotiriou-
Leventis Chem. Mater. 2008, 20, 6985–6997.
(22) Sroog, C. E.; Endrey, A. L.; Abrmo, S. V.; Berr, C. E.; Edward,
W. M.; Oliver, K. L. J. Polym. Sci., Part A 1965, 3, 1373–1390.
(23) (a) Edward, W. M.; Robinson, I. M. Polyimides of Pyromellitic Acid,
U.S. Patent No. 2,710,853, 1955. (b) Edwards, W. M.; Robinson, I. M.
Preparation of Pyromellitimides, U.S. Patent No. 2,867,609, 1959.
(24) (a) Woodfine, B.; Soutar, I.; Preston, P. N.; Jigajinni, V. B.; Stewart,
N. J.; Hay, J. N. Macromolecules 1993, 26, 6330–6334. (b) Baugher, A. H.;
Espe, M. P.; Goetz, J. M.; Schaefer, J.; Pater, R. H. Macromolecules 1997,
30, 6295–6301. (c) Hu, A. J.; Hao, J. Y.; He, T.; Yang, S. Y. Macromolecules
1999, 32, 8046–8051. (d) Xie, W.; Pan, W.-P.; Chuang, K. C. Thermochim.
Acta 2001, 367ꢀ368, 143–153.
*E-mail address: (N.L.) leventis@mst.edu; (C.S.-L.) cslevent@
mst.edu; (J.T.M.) jtmang@lanl.gov; (H.L.) hongbing.lu@
utdallas.edu.
’ ACKNOWLEDGMENT
We thank the following for their financial support: the Army
Research Office, under Award No. W911NF-10-1-0476 (N.L., C.
S.-L.); and the National Science Foundation, under Agreement
Nos. CHE-0809562 (N.L., C.S.-L.), DMR-0907291 (N.L., H.L.),
CMMI-0653970 (N.L., C.S.-L.), and CMMI-0653919 (H.L.).
We also acknowledge the Materials Research Center of Missouri
S&T for its support in sample characterization (SEM, XRD).
Solids NMR work was conducted at the University of Missouri
Columbia by Dr. Wei Wycoff. This work also benefited from the
use of the SANS instrument, LQD at the Manuel Lujan, Jr.
Neutron Scattering Center of the Los Alamos National Labora-
tory, supported by the DOE Office of Basic Energy Sciences; this
work also utilized facilities supported in part by the National
Science Foundation, under Agreement No. DMR-0454672.
(25) Sroog, C. E. Prog. Polym. Sci. 1991, 16, 561–694.
(26) Chidambareswarapattar, C.; Larimore, Z.; Sotiriou-Leventis, C.;
Mang, J. T.; Leventis, N. J. Mater. Chem. 2010, 20, 9666–9678.
(27) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760–3765.
(28) (a) Laguitton, B.; Mison, P.; Sillion, B.; Brisson, J. Macromolecules
1998, 31, 7203–7207. (b) Chen, C.-F.; Qin, W.-M.; Huang, X.-A. Polym. Eng.
Sci. 2008, 48, 1151–1156.
(29) Seeger, P. A.;Hjelm, R. P., Jr.J. Appl. Crystallogr. 1991, 24, 467–478.
(30) Liu, Y.; Sun, X. D.; Xie, X.-Q.; Scola, D. A. J. Polym. Sci., Part A:
Polym. Chem. 1998, 36, 2653–2665.
(31) The polymerization of bis-NAD via ROMP is expected to be a
living process that proceeds until all of the monomer is consumed. For
example, see: Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007,
32, 1–29.
(32) (a) Everett, D. H. Basic Principles of Colloid Science; The Royal
Society of Chemistry: London, U.K., 1988; p 189. (b) Ilmain, F.; Tanaka,
T.; Kokufuta, E. Nature 1991, 349, 400–401.
(33) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti,
R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603–619.
(34) Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M. Character-
ization of Porous Solids and Powders: Surface Area, Pore Size and Density;
Kluwer Academic Publishers: Norwell, MA, 2004; pp 44ꢀ45.
(35) Webb, P. A.; Orr, C. Analytical Methods in Fine Particle Technology;
Micromeritics Instrument Corporation: Norcross, GA, 1997; pp 67ꢀ68.
(36) (a) Beaucage, G. J. Appl. Crystallogr. 1995, 28, 717–728.
(b) Beaucage, G. J. Appl. Crystallogr. 1996, 29, 134–146. (c) Mang,
’ REFERENCES
(1) Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002, 102, 4243–4265.
(2) Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.;
Rolison, D. R. Science 1999, 284, 622–624.
(3) Kistler, S. S. Nature 1931, 127, 741.
(4) Kistler, S. S. J. Phys. Chem. 1932, 36, 52–63.
(5) Gash, A. E.; Pantoya, M.; Satcher, J. H.; Simpson, R. L. Polym.
Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2008, 49, 558–559.
(6) Leventis, N.; Chandrasekaran, N.; Sadekar, A. G.; Mulik, S.;
Sotiriou-Leventis, C. J. Mater. Chem. 2010, 20, 7456–7471.
(7) Baumann, T. F.; Gash, A. E.; Chinn, S. C.; Sawvel, A. M.; Maxwell,
R. S.; Satcher, J. H., Jr. Chem. Mater. 2005, 17, 395–401.
(8) Pekala, R. W. Low Density ResorsinolꢀFormaldehyde Aerogels, U.S.
Patent No. 4,873,218, 1989.
(9) Pekala, R. W.; Alviso, C. T.; Lu, X.; Gross, J.; Frickle, J. J. Non-Cryst.
Solids 1995, 188, 34–40.
(10) Li, W.-C.; Lu, A.-H.; Guo, S.-C. J. Colloidal Interface Sci. 2002,
254, 153–157.
(11) Pekala, R. W. MelamineꢀFormaldehyde Aerogels, U.S. Patent No.
5,086,085, 1992.
(12) Biesmans, G.; Martens, A.; Duffours, L.; Woignier, T.; Phalippou, J.
J. Non-Cryst. Solids 1998, 225, 64–68.
2260
dx.doi.org/10.1021/cm200323e |Chem. Mater. 2011, 23, 2250–2261