Communications
Table 2: Selected results of the on-column ring-closing metathesis.
approach the advantage of heterogeneous catalysis—the
ready separation of catalyst and reaction product, which is
normally a problem for nanopartical and homogeneous
catalysts—is also conserved.
[
a]
[b]
°
Substrate
Product
T
C
k
DG
À3 À1
À1
[8C]
[%]
[10
s
]
[kJmol
]
These results impressively illustrate the (r)evolution of
the chemistꢀs toolkit from flasks and beakers to miniaturized
reactors with highly selective catalysts and inherently com-
bined separation techniques. These reactors mimic biological
systems in which reactions take place efficiently at mini-
aturized interfaces in continuous-flow reactors. Therefore, the
development of chemical microplants for the production of
fine chemicals can be envisaged as a natural step in terms of
energy efficiency and environmental impact.
1
10.0 39.0 2.2
50.0 97.3 3.4
114.1
1
1
124.9
5
0.0 62.5 8.6
89.8
20.0 59.5 7.7
113.1
Received: March 26, 2007
Revised: May 21, 2007
Published online: July 31, 2007
9
0.0 51.0 4.9
105.6
Keywords: homogeneous catalysis · hydrogenation ·
metathesis · multiphase reactions · nanoparticles
[
a] Conversion C. [b] Reaction rate constant k. Conditions: 10-m-long
.
microcapillary (i.d. 250 mm, film thickness 1 mm), He as the inert carrier
gas.
[
[
1] C. T. Campbell, Nature 2004, 432, 282 – 283.
2] J. Knight, Nature 2002, 418, 474 – 475.
Because these catalytically active separation capillaries
are easy to prepare and handle we used them in a modular
design for two-step cascade reactions. We coupled a 80-cm-
long column, coated with the dissolved Grubbs 2nd gener-
ation catalyst, and a 10-cm-long Pd nanoparticle column,
followed by a separation column for product analysis (cf.
Figure 4). We used hydrogen as a carrier gas, but the
experiment could also be performed with helium in the first
column section and adding hydrogen in the second section.
We demonstrated that the metathesis of N,N-diallyltrifluoro-
acetamide followed by on-column hydrogenation is possible
in less than 6 min with an overall yield of 49% (see Figure 4
and the Supporting Information).
The strategies outlined here can be generally applied to
other catalytic processes, and we found that they can be
utilized in the comprehensive kinetic characterization of
catalysts and materials. Furthermore it can be envisioned that
catalytic capillaries could be useful for selective transforma-
tions in analytical applications and for structure elucidation.
Moreover, for a preparative scale-up only a stack of reactor
capillaries is necessary to increase the productivity. In this
[3] D. Janasek, J. Franzke, A. Manz, Nature 2006, 442, 374 – 380.
[4] D. Belder, M. Ludwig, L.-W. Wang, M. T. Reetz, Angew. Chem.
2006, 118, 2523 – 2526; Angew. Chem. Int. Ed. 2006, 45, 2463 –
2466.
[
[
[
[
5] S. J. Haswell, Nature 2006, 441, 705.
6] S. J. Haswell, P. Watts, Green Chem. 2003, 5, 240 – 249.
7] O. Trapp, G. Schoetz, V. Schurig, Chirality 2001, 13, 403 – 414.
8] O. Trapp, Anal. Chem. 2006, 78, 189 – 198.
[9] C. de Bellefon, N. Tanchoux, S. Caravieilhes, P. Grenouillet, V.
Hessel, Angew. Chem. 2000, 112, 3584 – 3587; Angew. Chem. Int.
Ed. 2000, 39, 3442 – 3445.
[
10] J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T.
Kitamori, S. Kobayashi, Science 2004, 304, 1305 – 1308.
11] P. Watts, S. J. Haswell, Chem. Soc. Rev. 2005, 34, 235 – 246.
12] Y. Uozumi, Y. M. A. Yamada, T. Beppu, N. Fukuyama, M. Ueno,
T. Kitamori, J. Am. Chem. Soc. 2006, 128, 15994 – 15995.
[
[
[13] Micro Instrumentation (Eds.: M. V. Koch, K. M. Van den
Bussche, R. W. Chrisman), Wiley-VCH, Weinheim, 2007.
[14] A. J. deMello, Nature 2006, 442, 394 – 402.
[15] G. M. Whitesides, Nature 2006, 442, 368 – 373.
[16] E. Gil-Av, Y. Herzberg-Minzly, Chem. Commun. 1961, 316.
[17] R. Thede, E. Below, D. Haberland, S. H. Langer, Chromatogra-
phia 1997, 45, 149 – 154.
[
[
[
[
[
[
[
18] N. A. Katsanos, R. Thede, F. Roubani-Kalantzopou-
lou, J. Chromatogr. A 1998, 795, 133 – 184.
19] T. D. Vu, A. Seidel-Morgenstern, S. Grüner, A.
Kienle, Ind. Eng. Chem. Res. 2005, 44, 9565 – 9574.
20] D. W. Bassett, H. W. Habgood, J. Phys. Chem. 1960,
64, 769 – 773.
21] M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming,
N. Breuer, R. Vogel, Science 1995, 267, 367 – 369.
22] A. Schmidt, R. Schomꢁcker, Ind. Eng. Chem. Res.
2007, 46, 1677 – 1681.
23] R. H. Grubbs, Angew. Chem. 2006, 118, 3845 – 3850;
Angew. Chem. Int. Ed. 2006, 45, 3760 – 3765.
24] A. Fürstner, Angew. Chem. 2000, 112, 3140 – 3172;
Angew. Chem. Int. Ed. 2000, 39, 3012 – 3043.
Figure 4. Modular design for a two-step on-column cascade reaction. N-trifluoro-
acetylpyrrolidine was synthesized within 6 min by coupling a 80 cm long meta-
[25] M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am.
Chem. Soc. 2001, 123, 6543 – 6554.
thesis column and a 10 cm long Pd nanoparticle hydrogenation column. H was
used as the reactive carrier gas.
[26] B. F. Straub, Angew. Chem. 2005, 117, 6129 – 6132;
Angew. Chem. Int. Ed. 2005, 44, 5974 – 5978.
2
7310
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7307 –7310