Organic Letters
Letter
̈
Catal. 2017, 7, 3968−3972. (d) Chakraborty, S.; Leitus, G.; Milstein,
D. Selective hydrogenation of nitriles to primary amines catalyzed by a
novel iron complex. Chem. Commun. 2016, 52, 1812−1815.
(3) (a) Tokmic, K.; Jackson, B. J.; Salazar, A.; Woods, T. J.; Fout, A.
R. Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation
to Primary Amines: A Combined Effort. J. Am. Chem. Soc. 2017, 139,
13554−13561. (b) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-
David, Y.; Milstein, D. Selective Hydrogenation of Nitriles to Primary
Amines Catalyzed by a Cobalt Pincer Complex. J. Am. Chem. Soc.
2015, 137, 8888−8891. (c) Liu, W.; Sahoo, B.; Junge, K.; Beller, M.
Cobalt Complexes as an Emerging Class of Catalysts for
Homogeneous Hydrogenations. Acc. Chem. Res. 2018, 51, 1858−
1869.
(4) (a) Maji, B.; Barman, M. K. Recent Developments of Manganese
Complexes for Catalytic Hydrogenation and Dehydrogenation
Reactions. Synthesis 2017, 49, 3377−3393. (b) Garbe, M.; Junge,
K.; Beller, M. Homogeneous Catalysis by Manganese-Based Pincer
Complexes. Eur. J. Org. Chem. 2017, 2017, 4344−4362. (c) Kallmeier,
F.; Kempe, R. Manganese Complexes for (De)Hydrogenation
Catalysis: A Comparison to Cobalt and Iron Catalysts. Angew.
Chem., Int. Ed. 2018, 57, 46−60. (d) Zell, T.; Langer, R. From
ruthenium to iron and manganese - a mechanistic view on challenges
and design principles of base metal hydrogenation catalysts.
ChemCatChem 2018, 10, 1930−1940. (d1) Filonenko, G. A.; van
Putten, R.; Hensen, E. J. M.; Pidko, E. A. Catalytic (de)hydrogenation
promoted by non-precious metals − Co, Fe and Mn: recent advances
in an emerging field. Chem. Soc. Rev. 2018, 47, 1459−1483.
(e) Gorgas, N.; Kirchner, K. Isoelectronic Manganese and Iron
Hydrogenation/Dehydrogenation Catalysts - Similarities and Diver-
gences. Acc. Chem. Res. 2018, 51, 1558−1569.
(b) Zirakzadeh, A.; de Aguiar, S. R. M. M.; Stoger, B.; Widhalm, M.;
Kirchner, K. Enantioselective Transfer Hydrogenation of Ketones
Catalyzed by a Manganese Complex Containing an Unsymmetrical
Chiral PNP′ Tridentate Ligand. ChemCatChem 2017, 9, 1744−1748.
(c) Espinosa-Jalapa, N. A.; Nerush, A.; Shimon, L. J. W.; Leitus, G.;
Avram, L.; Ben-David, Y.; Milstein, D. Manganese-Catalyzed
Hydrogenation of Esters to Alcohols. Chem. - Eur. J. 2017, 23,
5934−5938. (d) Elangovan, S.; Garbe, M.; Jiao, H.; Spannenberg, A.;
Junge, K.; Beller, M. Non-Pincer-Type Manganese Complexes as
Efficient Catalysts for the Hydrogenation of Esters. Angew. Chem.
2016, 128, 15590−15594. (e) van Putten, R.; Uslamin, E. A.; Garbe,
M.; Liu, C.; Gonzalez-de-Castro, A.; Lutz, M.; Junge, K.; Hensen, E. J.
M.; Beller, M.; Lefort, L.; Pidko, E. A. Non-Pincer-Type Manganese
Complexes as Efficient Catalysts for the Hydrogenation of Esters.
Angew. Chem., Int. Ed. 2017, 56, 7531−7534. (f) Kar, S.; Goeppert,
A.; Kothandaraman, J.; Prakash, G. K. S. Manganese-Catalyzed
Sequential Hydrogenation of CO2 to Methanol via Formamide. ACS
Catal. 2017, 7, 6347−6351. (g) Dubey, A.; Nencini, L.; Fayzullin, R.
R.; Nervi, C.; Khusnutdinova, J. R. Bio-Inspired Mn(I) Complexes for
the Hydrogenation of CO2 to Formate and Formamide. ACS Catal.
2017, 7, 3864−3868.
(9) DFT calculations reveal that the illusive mer-isomer of 1 is less
stable by 7.9 kcal/mol. Moreover, the mer geometry of the Mn(CO)3
moiety would give rise to two rather than three νCO bands of nearly
equal intensities.
(5) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.;
Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. Selective Catalytic
Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined
Manganese Pincer Complexes. J. Am. Chem. Soc. 2016, 138, 8809−
8814.
(6) (a) Kallmeier, F.; Irrgang, T.; Dietel, T.; Kempe, R. Highly
Active and Selective Manganese C = O Bond Hydrogenation
Catalysts: The Importance of the Multidentate Ligand, the Ancillary
Ligands, and the Oxidation State. Angew. Chem., Int. Ed. 2016, 55,
11806−11809. (b) Bruneau-Voisine, A.; Wang, D.; Roisnel, T.;
Darcel, C.; Sortais, J.-P. Hydrogenation of ketones with a manganese
PN3P pincer pre-catalyst. Catal. Commun. 2017, 92, 1−4.
(b1) Widegren, M. B.; Harkness, G. J.; Slawin, A. M. Z.; Cordes,
D. B.; Clarke, M. L. A Highly Active Manganese Catalyst for
Enantioselective Ketone and Ester Hydrogenation. Angew. Chem., Int.
Ed. 2017, 56, 5825−5828. (c) Garbe, M.; Junge, K.; Walker, S.; Wei,
Z.; Jiao, H.; Spannenberg, A.; Bachmann, S.; Scalone, M.; Beller, M.
Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones
Using a Defined Chiral PNP Pincer Ligand. Angew. Chem., Int. Ed.
̈
2017, 56, 11237−11241. (d) Glatz, M.; Stoger, B.; Veiros, L. F.;
Kirchner, K. Chemoselective Hydrogenation of Aldehydes under Mild
and Base-free Conditions - Manganese Outperforms Rhenium. ACS
Catal. 2018, 8, 4009−4016. (e) Li, L.; Wei, D.; Bruneau-Voisine, A.;
Ducamp, M.; Henrion, M.; Roisnel, T.; Dorcet, V.; Darcel, C.;
́
Carpentier, J.-F.; Soule, J.-F.; Sortais, J.-B. Rhenium and Manganese
Complexes Bearing Amino-Bis(phosphinite) Ligands: Synthesis,
Characterization, and Catalytic Activity in Hydrogenation of Ketones.
Organometallics 2018, 37, 1271−1279. (f) Wei, D.; Bruneau-Voisine,
A.; Chauvin, T.; Dorcet, V.; Roisnel, T.; Valyaev, D. A.; Lugan, N.;
Sortais, J.-B. Hydrogenation of Carbonyl Derivatives Catalysed by
Manganese Complexes Bearing Bidentate Pyridinyl-Phosphine
Ligands. Adv. Synth. Catal. 2018, 360, 676−681.
̈
(7) Bertini, F.; Glatz, M.; Gorgas, N.; Stoger, B.; Peruzzini, M.;
Veiros, L. F.; Kirchner, K.; Gonsalvi, L. Carbon Dioxide Hydro-
genation Catalyzed by Well-Defined Mn(I) PNP Pincer Hydride
Complexes. Chem. Sci. 2017, 8, 5024−5029.
(8) (a) Perez, M.; Elangovan, S.; Spannenberg, A.; Junge, K.; Beller,
M. Molecularly Defined Manganese Pincer Complexes for Selective
Transfer Hydrogenation of Ketones. ChemSusChem 2017, 10, 83−86.
D
Org. Lett. XXXX, XXX, XXX−XXX