Page 3 of 3
ChemComm
Q. Tang, Q. Zhang, H. Wu, Y. Wang, J. Catal. 2005, 230, 384.
a) L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A.
Jacobs, D. E. De Vos, Chem. Eur. J. 2006, 12, 7353; b) C. Di
Nicola, Y. Y. Karabach, A. M. Kirillov, M. Monari, L. Pandolfo,
C. Pettinari, A. J. L. Pombeiro, Inorg. Chem. 2006, 46, 221; c) P.
Horcajada, S. Surble, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S.
Chang, J.-M. Greneche, I. Margiolaki, G. Férey, Chem. Commun.
2007, 2820.
upon addition of the radical scavenger (see Figure S9), which
suggests that the process indeed proceeds via radical
7
8
24-25
epoxidation.
On the other hand, the same reaction in the
7
0
presence of oxygen clearly indicated the formation of benzoic
acid and aldehyde products as a result of oxygen involvement
5
0
5
(
see Table S6). Thus, the proposed reaction mechanism is shown
in SI, Scheme S2. First, reaction between Co(II)-MOF and
TBHP takes place to form a Co(III)-peroxy adduct. The Co(III)-
peroxy adduct then releases a t-butoxy radical and regenerates
Co(II)-MOF. This is followed by a reaction between t-butoxy
radical and olefin to form a t-butoxperoxy species that will
further undergo migration of oxygen to form the epoxide product
and t-BuOH byproduct. Furthermore, possible involvement of
oxygen or t-butoxy radicals with the t-butoxperoxy species will
result in some acid and aldehyde byproducts.
75
9
1
a) K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S.
Nakagaki, D. W. Smithenry, S. R. Wilson, Acc. Chem. Res. 2005,
3
8, 283; b) A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J.
1
Am. Chem. Soc. 2009, 131, 4204.
a) S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler,
A. Tissler, R. W. Fischer, R. A. Fischer, Angew. Chem. 2005, 117,
0
8
0
6
394; Angew. Chem. Int. Ed., 2005, 44, 6237; b) F. Schröder, D.
Esken, M. Cokoja, M. W. E. van den Berg, O. I. Lebedev, G. Van
Tendeloo, B. Walaszek, G. Buntkowsky, H.-H. Limbach, B.
Chaudret, R. A. Fischer, J. Am. Chem. Soc. 2008, 130, 6119.
a) C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005,
1
In summary, we have successfully synthesized and
characterized a new 2D MOF material, Co(Hoba)
2 2
(H O)2∞ (1).
85 11
1
27, 8940; b) M. J. Ingleson, J. Perez Barrio, J.-B. Guilbaud, Y. Z.
Removal of coordinated water molecules in 1 gives rise to 1’
which is thermally stable to 300 C. 1’ shows excellent
conversion and selectivity in epoxidation of olefins, especially
under solvent-free conditions, and is highly recyclable (see SI,
Table S4).
Khimyak, M. J. Rosseinsky, Chem. Commun. 2008, 2680; c) K. K.
Tanabe, S. M. Cohen, Angew. Chem. 2009, 121, 7560; Angew.
Chem. Int. Ed. 2009, 48, 7424.
a) T.-B. Liao, Y. Ling, Z.-X. Chen, Y.-M. Zhou, L.-H. Weng,
Chem. Commun. 2010, 46, 1100; b) T. Kawamichi, Y. Inokuma,
M. Kawano, M. Fujita, Angew. Chem. 2010, 122, 2425; Angew.
Chem. Int. Ed. 2010, 49, 2375.
L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J.
T. Hupp, Chem. Soc. Rev. 2009, 38, 1450; b) J. Kim, S.
Bhattacharjee, K.-E. Jeong, S.-Y. Jeong, W.-S. Ahn, Chem.
Commun. 2009, 3904; c) Y. K. Hwang, D.-Y. Hong, J.-S. Chang,
S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G.
Férey, Angew. Chem. 2008, 120, 4212; Angew. Chem. Int. Ed.
2008, 47, 4144; dꢀ ꢁꢂ ꢃꢄꢅꢆꢇꢈꢉ ꢊꢂ ꢋꢆꢌꢍꢎꢉ ꢏꢂ ꢐꢑꢒꢑꢇꢆꢉ ꢓꢂ ꢔꢂ ꢕꢄꢌꢖꢉ J.
Am. Chem. Soc. 2008, 130, 5854;
C. H. Swanson, H. A. Shaikh, D. L. Rogow, A. G. Oliver, C. F.
Campana, S. R. J. Oliver, J. Am. Chem. Soc. 2008, 130, 11737.
a) S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-
Schmitt, Chem. Commun. 2006, 2563; b) S.-H. Cho, T. Gadzikwa,
M. Afshari, S. T. Nguyen, J. T. Hupp, Eur. J. Inorg. Chem. 2007,
2
0
9
0
12
Notes and references
1
3
a
Department of Chemistry and Chemical Biology, Rutgers, The State
95 14
2
5
b
Department of Chemical and Biochemical Engineering, Rutgers, The
§
3
3
4
4
0
5
0
5
Electronic Supplementary Information (ESI) available: syntheses and
1
5
selected crystallographic data of 1, PXRD, TG, catalytic activity,
recyclability test and mechanism study results, GC-MS spectra of
1
1
05 16
products and additional figures.
CCDC 777415. For ESI and
crystallographic data in CIF or other electronic format see DOI:
10.1039/b000000x
3
2
1, 4863; c) A. Pramanik, S. Abbina, G. Das, Polyhedron, 2007,
6, 5225; d) K. Brown, S. Zolezzi, P. Aguirre, D. Venegas-Yazigi,
‡These authors contributed equally to this work.
T.A. gratefully acknowledges the partial financial assistance by the US
10
V. Paredes-Garcia, R. Baggio, M. A. Novak, E. Spodine, Dalton
Trans. 2009, 1422; e) R. Sen, S. Koner, D. K. Hazra, M. Helliwell,
M. Mukherjee, Eur. J. Inorg. Chem. 2011, 2011, 241.
work. TA also thanks NSF for NSF American Competitiveness and
Innovation (NSF-ACIF) Fellowship for 2010 and NSF Special Creativity
grant in 2011. J.L. would like to acknowledge the partial support from the 115
17
a) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105,
2329; b) Q. Tang, Y. Wang, J. Liang, P. Wang, Q. Zhang, H. Wan,
Chem. Commun. 2004, 440; c) J. Hartung, M. Greb, J. Organomet.
Chem., 2002, 661, 67;
a) Y. Zhang, Z. Li, W. Sun, C. Xia, Catal. Commun. 2008, 10, 237;
b) D. Gao, Q. Gao, Catal. Commun. 2007, 8, 681; c) E. K.
Beloglazkina, A. G. Majouga, R. B. Romashkina, N. V. Zyk,
Tetrahedron Lett., 2006, 47, 2957.
P. Banerjee; S. Chatterjee; S. Pramanik; S. C. Bhattacharya,
Colloid Surf. A 2007, 302, 44.
This reaction is said to be "solvent-free" to indicate that there is no
additional solvent added into the reaction mixture other than
decane in the TBHP solution.
a) A. L. Baumstark, P. C. Vasquez, J. Org. Chem. 1988, 53, 3437;
b) S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue, R. G.
Wilde, J. Org. Chem. 1995, 60, 1391.
H. E. B. Lempers, R. A. Sheldon, J. Catal. 1998, 175, 62.
a) C. Chizallet; S. Lazare; D. Bazer-Bachi, F. Bonnier, V. Lecocq,
E. Soyer, A.-A. Quoineaud, N. Bats, J. Am. Chem. Soc. 2010, 132,
12365; b) C. D. Wu, L. X. Shi, Chem. Commun. 2011, 47, 2928.
M. Yonemitsu; Y. Tanaka; M. Iwamoto, J. Catal., 1998, 178, 207.
a) R. D. Oldroyd; J. M. Thomas; T. Maschmeyer; P. A. MacFaul;
D. W. Snelgrove; K. U. Ingold; D. D. M. Wayner, Angew. Chem.
NSF through Grant No. 0706069.
1
8
1
2
S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B.
Ripin, Chem.Rev. 2006, 106, 2943.
a) Q. H. Xia, H. Q. Ge, C. P. Ye, Z. M. Liu, K. X. Su, Chem. Rev.
1
20
2
005, 105, 1603; b) L. Espinal, S. L. Suib, J. F. Rusling, J. Am.
19
Chem. Soc. 2004, 126, 7676; c) J. E. BaKckvall, Modern Oxidation
Methods, Wiley-VCH,Weinheim, 2004;
2
2
0
1
5
5
6
6
0
5
0
5
3
4
a) C.-M. Che, J.-S. Huang, Chem. Commun. 2009, 3996; b) B. S.
Lane, K. Burgess, Chem. Rev, 2003, 103, 2457.
a) Z. Wang, G. Chen, K. Ding, Chem. Rev. 2008, 109, 322; b) N. S.
Patil, B. S. Uphade, P. Jana, S. K. Bharagava, V. R. Choudhary, J.
Catal. 2004, 223, 236.
125
5
a) S. Xiang, Y. Zhang, Q. Xin C. Li, Angew. Chem. 2002, 114, 849;
Angew. Chem. Int. Ed., 2002, 41, 821; b) A. K. Sinha, S. Seelan, S. 130 23
22
Tsubota, M. Haruta, Angew. Chem. 2004, 116, 1572; Angew.
Chem. Int. Ed., 2004, 43, 1546; c) N. E. Leadbeater; M. Marco,
Chem. Rev, 2002, 102, 3217;
2
4
6
a) M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc.
25
2
001, 123, 7194; b) M. Jia, A. Seifert, M. Berger, H. Giegengack,
135
1
996, 108, 2966; Angew. Chem. Int. Ed., 1996, 35, 2787; b) J.
S. Schulze, W. R. Thiel, Chem. Mater. 2004, 16, 877; c) S.
Shylesh; M. Jia; W. R. Thiel, Eur. J. Inorg. Chem., 2010, 2010,
4395; d) K. Hasan, N. Brown, C. M. Kozak, Green Chem. 2011,
Sebastian; K. M. Jinka; R. V. Jasra, J. Catal., 2006, 244, 208.
1
3, 1230.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |
3