Page 5 of 6
Journal of the American Chemical Society
3
D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug
Delivery. J. Am. Chem. Soc. 2015, 137, 8352-8355.
.(a) Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S.-H.;
13.(a) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng,
X. A two-dimensional conjugated polymer framework with fully sp -
bonded carbon skeleton. Polym. Chem. 2016, 7, 4176-4181; (b) Jin, E. ;
2
1
2
3
4
5
6
7
8
9
7
Zhang, W. Ionic Covalent Organic Frameworks with Spiroborate Linkage.
Angew. Chem., Int. Ed. 2016, 55, 1737-1741; (b) Liao, Y.; Li, J.; Thomas,
A. General Route to High Surface Area Covalent Organic Frameworks
and Their Metal Oxide Composites as Magnetically Recoverable
Adsorbents and for Energy Storage. ACS Macro Lett. 2017, 6, 1444-1450;
Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.;
Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-dimensional sp
2
carbon-conjugated covalent organic frameworks. Science 2017, 357, 673-
676. (c) Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M. Porous Crystalline
Olefin-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2019,
141, 6848-6852.
14. Rao, M. R.; Fang, Y.; Feyter, S. D.; Perepichka, D. F. Conjugated
Covalent Organic Frameworks via Michael Addition-Elimination. J. Am.
Chem. Soc. 2017, 139, 2421-2427.
15 .Zhang, B.; Wei, M.; Mao, H.; Pei, X.; Alshmimri, S. A.; Reimer, J.
A.; Yaghi, O. M. Crystalline Dioxin-Linked Covalent Organic
Frameworks from Irreversible Reactions. J. Am. Chem. Soc. 2018. 140,
12715-12719.
16. Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C-C
Bonded Two-Dimensional Conjugated Covalent Organic Framework
Films by Suzuki Polymerization on a Liquid-Liquid Interface. Angew.
Chem., Int. Ed. 2019. 58, 1376-1381.
17. Liu, Y.; Diercks, C. S.; Ma, Y. H.; Lyu, H.; Zhu, C.; Alshmimri, S.
A.; Alshihri, S.; Yaghi, O. M. 3D Covalent Organic Frameworks of
Interlocking 1D Square Ribbons. J. Am. Chem. Soc. 2019, 141, 677-683.
18. Layer, R. W. Chemistry of Imines. Chem. Rev. 1963, 63, 489-510.
19. Segura, J. L.; Mancheno, M. J.; Zamora, F. Covalent organic
frameworks based on Schiff-base chemistry: synthesis, properties and
potential applications. Chem. Soc. Rev. 2016, 45, 5635-5671.
20.(a) Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.;
Feng, X.; Mullen, K. Catalyst-free Preparation of Melamine-Based
Microporous Polymer Networks through Schiff Base Chemistry. J. Am.
Chem. Soc. 2009, 131, 7216-7217; (b) Ou, H.; You, Q.; Li, J.; Liao, G.;
Xia, H.; Wang, D. A rich-amine porous organic polymer: an efficient and
recyclable adsorbent for removal of azo dye and chlorophenol. RSC Adv.
2016, 6, 98487-98497. (c) Laybourn, A.; Dawson, R.; Clowes, R.; Iggo, J.
A.; Cooper, A. I.; Khimyak, Y. Z.; Adams, D. J. Branching out with
aminals: microporous organic polymers from difunctional monomers.
Polym. Chem. 2012, 3, 533-537.
21. Niwas, S.; Bhaduri, A. P. A New Simple Synthesis of 5-Aryl-4-
Methoxycarbonyl-3-Methyl-2-Cyclohexenones. Synthesis-Stuttgart 1983,
110-111.
22. O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The
Reticular Chemistry Structure Resource (RCSR) Database of, and
Symbols for, Crystal Nets. Acc. Chem. Res. 2008, 41, 1782-1789.
23. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti,
R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for
gas/solid systems-with special reference to the determination of surface
area and porosity. Pure Appl. Chem. 1985, 57, 603-619.
(c) Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.;
Wang, C. A 2D porous porphyrin-based covalent organic framework for
sulfur storage in lithium sulfur batteries. J. Mater. Chem. A. 2016, 4,
7
416-7421; (d) DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.;
Rodriguez-Calero, G. G.; Bisbey, R. P.; Abruna, H. D.; Dichtel, W. R.
Rapid and Efficient Redox Processes within 2D Covalent Organic
Framework Thin Films. ACS Nano 2015, 9, 3178-3183; (e) Wang, S.;
Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.;
Feng, X.; Wang, B. Exfoliation of Covalent Organic Frameworks into
Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-
Ion Batteries. J. Am. Chem. Soc. 2017, 139, 4258-4261.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
8
.(a) Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu,
W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper,
A. I. Sulfone-containing covalent organic frameworks for photocatalytic
hydrogen evolution from water. Nat. Chem. 2018, 10, 1180-1189; (b) Cai,
S.-L.; Zhang, Y.-B.; Pun, A. B.; He, B.; Yang, J.; Toma, F. M.; Sharp, I.
D.; Yaghi, O. M.; Fan, J.; Zheng, S.-R.; Zhang W.-G.; Liu, Y. Tunable
electrical conductivity in oriented thin films of tetrathiafulvalene-based
covalent organic framework. Chem. Sci. 2014, 5, 4693-4700; (c) Ding, H.;
Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.;
Wang, C. An AIEgen-based 3D covalent organic framework for white
light-emitting diodes. Nat. Commun. 2018, 9, 5234; (d) Li, X.; Gao, Q.;
Wang, J.; Chen, Y.; Chen, Z.-H.; Xu, H.-S.; Tang, W.; Leng, K.; Ning, G.-
H.; Wu, J.; Xu, Q.-H.; Quek, S. Y.; Lu, Y.; Loh, K. P. Tuneable near
white-emissive two-dimensional covalent organic frameworks. Nat.
Commun. 2018, 9, 2335.
9. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A.
J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science
2
005, 310, 1166-1170.
0.(a) Kandambeth, S.; Dey, K.; Banerjee, R. Covalent Organic
Frameworks: Chemistry beyond the Structure. J. Am. Chem. Soc. 2019,
141, 1807-1822 (b) Lohse, M. S.; Bein, T. Covalent Organic
Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater.
018, 28. 1705553; (c) Huang, N.; Wang, P.; Jiang, D. Covalent organic
1
;
2
frameworks: a materials platform for structural and functional designs.
Nat. Rev. Mater. 2016, 1, 16068.
1
1.(a) Bertrand, G. H. V.; Michaelis, V. K.; Ong, T.-C.; Griffin, R. G.;
Dinca, M. Thiophene-based covalent organic frameworks. Proc. Natl.
Acad. Sci. U.S.A. 2013, 110, 4923-4928; (b) Dienstmaier, J. F.; Medina, D.
D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W. M.; Lackinger, M.
Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized
by On-Surface Condensation of Diboronic Acids. ACS Nano 2012, 6,
24. (a) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.;
Haranczyk, M. Algorithms and tools for high-throughput geometry-based
analysis of crystalline porous materials. Micropor. Mesopor. Mater. 2012,
149, 134-141; (b) Martin, R. L.; Smit, B.; Haranczyk, M. Addressing
Challenges of Identifying Geometrically Diverse Sets of Crystalline
Porous Materials. J. Chem Inf. Model. 2012, 52, 308-318.
25. (a) Ding, S.-Y.; Dong, M.; Wang, Y.-W.; Chen, Y.-T.; Wang, H.-Z.;
Su, C.-Y.; Wang, W. Thioether-based fluorescent covalent organic
framework for selective detection and facile removal of mercury(II). J.
Am. Chem. Soc. 2016, 138, 3031-3037; (b) Wan, S.; Guo, J.; Kim, J.; Ihee,
H.; Jiang, D. A photoconductive covalent organic framework: self-
condensed arene cubes composed of eclipsed 2D polypyrene sheets for
photocurrent generation. Angew. Chem., Int. Ed. 2009, 48, 5439-5442.
7
234-7242; (c) Spitler, E. L.; Dichtel, W. R. Lewis acid-catalysed
formation of two-dimensional phthalocyanine covalent organic
frameworks. Nat. Chem. 2010, 2, 672-677.
1
2.(a) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.;
O'Keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous
Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131, 4570-4571;
(b) Zhu, Y.; Wan, S.; Jin, Y.; Zhang, W. Desymmetrized Vertex Design
for the Synthesis of Covalent Organic Frameworks with Periodically
Heterogeneous Pore Structures. J. Am. Chem. Soc. 2015, 137, 13772-
1
3775.
ACS Paragon Plus Environment