S. Chandrasekhar et al. / Tetrahedron: Asymmetry 20 (2009) 1742–1745
1745
was filtered through Celite, washed with methanol (2 ꢂ 3 mL),
Acknowledgment
and evaporated in vacuo. The crude product was recrystallized from
ether to obtain the dipeptide organocatalyst 1 (74% yield, 218 mg);
K.J. thanks the CSIR, New Delhi for financial assistance.
½
a 2D5
ꢀ
¼ ꢁ21:1 (c 0.5, MeOH); mp: 227–228 °C; IR (KBr, thinfilm):
m
3430, 3271, 2933, 1679, 1586, 1389 cmꢁ1 1H NMR (CD3OD,
;
References
300 MHz): d 0.07 (s, 6H), 0.74 (s, 9H), 1.01 (d, J = 6.2 Hz, 3H), 1.79–
1.96 (m, 2H), 1.94–2.07 (m, 1H), 2.30–2.24 (m, 1H), 3.07–3.24 (m,
3H), 4.07–4.11 (d, J = 2.2 Hz, 1H), 4.18–4.24 (dd, J = 8.4, 6.4 Hz,
1H), 4.32–4.40 (m, 1H). 13C NMR (CD3OD, 75 MHz): d 175.7, 175.5,
170.7, 70.7, 61.7, 61.2, 47.5, 31.1, 26.4, 26.2, 25.3, 22.0, 19.0,
ꢁ3.56, ꢁ4.37, ꢁ4.47, ꢁ5.69; ESIMS: (m/z) 331 (M+); HRMS calcd
for 331.2053 C15H31N2O4SiNa, found 331.2068.
1. (a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615–1621; (b) List, B.;
Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395–2396; (c)
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc 2001, 123, 5260–
5267.
2. (a) List, B. Synlett 2001, 1675–1686; (b) List, B. Acc. Chem. Res. 2004, 37, 548–
557; (c) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N.
Acc. Chem. Res. 2004, 37, 558–569; (d) Saito, S.; Yamamoto, H. Acc. Chem. Res.
2004, 37, 570–579; (e) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev.
2004, 33, 65–75; (f) Guillena, G.; Na´jera, C.; Ramo´n, D. J. Tetrahedron:
Asymmetry 2007, 18, 2249–2293; (g) Hayashi, Y.; Aratake, T. I. S.; Ishikawa,
H. Angew. Chem., Int. Ed. 2008, 47, 2082–2084; (h) Melchiorre, P.; Marigo, M.;
Carlone, A.; Bortoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138–6171; (i) Dalko, P.
I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175; (j) Erkkila, A.;
Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416–5470; (k) Mukharjee, . S.;
Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–5569.
3. (a) Chandrasekhar, S.; Tiwari, B.; Parida, B. B.; Reddy, Ch. R. Tetrahedron:
Asymmetry 2008, 19, 495–499; (b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.;
Yamamoto, H. Angew. Chem., Int. Ed 2004, 43, 1983–1986; (c) Hartikka, A.;
Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831–1834; (d) Berkessel, A.;
Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141–1146; (e) Nakadai, M.; Saito,
S.; Yamamoto, H. Tetrahedron 2002, 58, 8167–8177.
4. (a) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. Rev. 2007, 107, 5759–
5812; (b) Kofoed, J.; Nielsen, J.; Reymond, J. L. Bioorg. Med. Chem. Lett. 2003, 13,
2445–2447; (c) Raj, M.; Vishnumaya; Ginotra, S. K.; Singh, V. K. Org. Lett. 2006,
8, 4097–4099; (d) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.;
Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2005, 127, 9285–9289; (e) Krattiger, P.;
Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101–1103;
(f) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-
D. J. Am. Chem. Soc. 2003, 125, 5262–5263.
5. (a) Shi, L.-X.; Sun, Q.; Ge, Z.-M.; Zhu, Y.-Q.; Cheng, T.-M.; Li, R.-T. Synlett 2004,
2215–2217; (b) Andreae, R. M. M.; Davis, P. A. Tetrahedron: Asymmetry 2005,
16, 2487–2492.
6. (a) Chandrasekhar, S.; Narsihmulu, Ch.; Reddy, N. R.; Sultana, S. S. Chem.
Commun. 2004, 25, 2450–2451; (b) Chandrasekhar, S.; Vijeender, K.; Sridhar,
Ch. Tetrahedron Lett. 2007, 48, 4935–4937; (c) Chandrasekhar, S.; Reddy, N. R.;
Sultana, S. S.; Narsihmulu, Ch.; Reddy, K. V. Tetrahedron 2006, 62, 338–345.
7. Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5755–5760.
8. (a) Wu, X.; Jiang, Z.; Shen, H. M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812–816; (b)
Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgenson, K. A. Angew. Chem., Int. Ed.
2005, 44, 794–797.
9. Rispens, M. T.; Gelling, O. J.; Vries, A. H. M.; Bolhuis, A. M. F.; Feringa, B. L.
Tetrahedron 1996, 52, 3521–3546.
4.1.4. Representative procedure for the aldol reaction
To a stirred solution of catalyst 1 (20 mol %) in chloroform
(2 mL), was added acetone (4 mmol) and then stirred for 15 min.
After this time, aldehyde (1 mmol) was added and stirring was
continued for a given time (Table 2) at room temperature. After
completion of the reaction, (monitored by TLC), water was added
and extracted with dichloromethane (2 ꢂ 5 mL). The combined or-
ganic layers were dried over sodium sulfate and evaporated in va-
cuo. The crude product was purified by silicagel column
chromatography to afford the pure product.
4.1.4.1. (R)-4-(2-Fluorophenyl)-4-hydroxybutan-2-one 9f. Col-
orless oil, ½a 2D5
ꢀ
¼ þ65:9 (c 1, CHCl3); IR (neat):
m 3417, 2923,
1636, 769 cmꢁ1
;
1H NMR (CDCl3, 300 MHz): d 2.19 (s, 3H),
2.83–2.89 (m, 2H), 3.69 (d, J = 3.7 Hz, 1H), 5.39–5.46 (m, 1H),
6.96–7.04 (1H, m), 7.12–7.18 (m, 1H), 7.21–7.29 (m, 1H), 7.49–
7.56 (m, 1H); 13C NMR (CDCl3, 75 MHz): d 30.4, 50.3, 63.9,
114.8, 115.1, 124.2, 127.1, 127.2, 128.7, 128.8, 129.5, 129.7,
157.5, 160.7, 208.9; ESIMS: (m/z) 205 (M+Na+); HRMS calcd for
182.0743 C10H11FO2, found 182.0740. Enantiomeric excess: 80%,
determined by HPLC analysis using chiral pak 250 ꢂ 4.6
l, col-
umn (isopropanol/hexanes 05:95), UV 210 nm, flow rate
,
1.0 ml/min, , major isomer tR 7.39 min, tR minor isomer 8.23;
IR, 1H, 13C NMR and mass spectral data of the known products
9a and 9b,6c 9c to 9e,4f 9g,10 9h,6c 9i to 9k4f were identical with
the reported data.
10. Chen, J.-R.; An, X.-L.; Zhu, X.-Y.; Wang, X.-F.; Xiao, W.-J. J. Org. Chem. 2008, 73,
6006–6009.