Organic Letters
Letter
intermediates that result from rearrangement reactions under
these π-extension conditions have been unequivocally identified
and characterized. These studies suggest that π-extension of
(7) Quernheim, M.; Golling, F. E.; Zhang, W.; Wagner, M.; Rad
̈
er, H.-
J.; Nishiuchi, T.; Mu
̈
llen, K. Angew. Chem., Int. Ed. 2015, 54, 10341−
10346.
(
8) Nishiuchi, T.; Feng, X.; Enkelmann, V.; Wagner, M.; Mu
Chem. - Eur. J. 2012, 18, 16621−16625.
9) (a) Sisto, T. J.; Zakharov, L. N.; White, B. M.; Jasti, R. Chem. Sci.
̈
llen, K.
bent para-phenylene units is possible when the SE is less than
pp
4
.3 kcal/mol. When the SEpp is less than 3.0 kcal/mol, no
(
rearrangement is observed. The structure of 32A represents a
rare example of a macrocyclic helicene system that is both
twisted and bent, with an end-to-end bend angle of 31.8° and
2
2
(
016, 7, 3681−3688. (b) Sisto, T. J.; Tian, X.; Jasti, R. J. Org. Chem.
012, 77, 5857−5860.
10) Dou, X.; Yang, X.; Bodwell, G. J.; Wagner, M.; Enkelmann, V.;
4
6.9 kcal/mol (an additional 27.7 kcal/mol starting from 26) of
Mullen, K. Org. Lett. 2007, 9 (13), 2485−2488.
̈
SE. We hope that these results will serve as a guide for future
synthetic efforts aimed toward π-extension of benzenoid
macrocycles and their conversion into PAH-containing macro-
cycles, such as CNBs. Finally, mechanistic investigations of the
Scholl reactions presented here to better understand the
observed rearrangement reactions, as well as the synthesis of
analogues of 32A, are underway in our laboratory and will be
reported in due course.
(
12) (a) Mitra, N. K.; Meudom, R.; Gorden, J. D.; Merner, B. L. Org.
Lett. 2015, 17, 2700−2703. (b) Mitra, N. K.; Meudom, R.; Corzo, H.
H.; Gorden, J. D.; Merner, B. L. J. Am. Chem. Soc. 2016, 138, 3235−
3
3
(
(
240. (c) Mitra, N. K.; Corzo, H. H.; Merner, B. L. Org. Lett. 2016, 18,
278−3281.
14) Ohlendorf, G.; Mahler, C. W.; Jester, S.- S.; Schnakenburg, G.;
Grimme, S.; Ho
(15) Ravat, P.; Hinkelmann, R.; Steinebrunner, D.; Prescimone, A.;
Bodoky, I.; Jurícek, M. Org. Lett. 2017, 19, 3707−3710.
̈
ger, S. Angew. Chem., Int. Ed. 2013, 52, 12086−12090.
ASSOCIATED CONTENT
■
̌
*
S
Supporting Information
Experimental procedures, characterization data, including
1
13
H and C NMR spectra for all new compounds, and
crystallographic data (PDF)
AUTHOR INFORMATION
■
*
ORCID
Author Contributions
†N.K.S. and N.K.M. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This material is based upon work supported by the National
Science Foundation under Grant No. CHE-1654691. The
authors are also grateful to Auburn University, the College of
Sciences and Mathematics, and the Department of Chemistry
and Biochemistry. Umicore is also thanked for generous catalyst
donations.
REFERENCES
■
(
1) King, B. T.; Kroulík, J.; Robertson, C. R.; Rempala, P.; Hilton, C.
L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72 (7), 2279−
2
(
288.
2) Do
Ed. 2011, 50, 2540−2543.
3) Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. Angew.
Chem., Int. Ed. 2011, 50, 12582−12585.
4) Danz, M.; Tonner, R.; Hilt, G. Chem. Commun. 2012, 48, 377−
79.
5) (a) Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K.
̈
ssel, L.; Gherghel, L.; Feng, X.; Mullen, K. Angew. Chem., Int.
̈
(
(
3
(
Science 2017, 356, 172−175. (b) Povie, G.; Segawa, Y.; Nishihara, T.;
Miyauchi, Y.; Itami, K. J. Am. Chem. Soc. 2018, 140, 10054−10059.
(
6) Segawa, Y.; Yagi, A.; Ito, H.; Itami, K. Org. Lett. 2016, 18, 1430−
1433.
D
Org. Lett. XXXX, XXX, XXX−XXX