Communication
ChemComm
‡
accessible transition state leading to H
ꢀ
2
elimination (DG
=
(e) D. Schuhknecht, C. Lhotzky, T. P. Spaniol, L. Maron and J. Okuda,
Angew. Chem., Int. Ed., 2017, 56, 12367–12371; ( f ) B. Maitland,
M. Wiesinger, J. Langer, G. Ballmann, J. Pahl, H. Elsen, C. Farber and
S. Harder, Angew. Chem., Int. Ed., 2017, 56, 11880–11884; (g) A. Causero,
G. Ballmann, J. Pahl, H. Zijlstra, C. Farber and S. Harder, Organome-
tallics, 2016, 35, 3350–3360.
ꢀ1
12.1 kcal mol ).
Further experiments to scale up and optimise the synthesis
of 3 and 4 were hampered by the co-crystallisation of both
compounds and the facility of the system toward redistribution
3
V. Leich, T. P. Spaniol, L. Maron and J. Okuda, Angew. Chem., Int.
Ed., 2016, 55, 4794–4797.
of the triphenylstannane reagent to Ph
tentatively suggest that the production of elemental tin may be
ascribed to the dismutation of the Ph SnH reagent to Ph Sn
and unstable SnH , which further eliminates H . Under this regime,
4
Sn and metallic tin. We
4 For example, (a) J. Spielmann, F. Buch and S. Harder, Angew. Chem., Int.
Ed., 2008, 47, 9434–9438; (b) J. Spielmann and S. Harder, J. Am. Chem.
Soc., 2009, 131, 5064–5065; (c) M. D. Anker, M. S. Hill, J. P. Lowe and
M. F. Mahon, Angew. Chem., Int. Ed., 2015, 54, 10009–10011; (d) M. D.
Anker, C. E. Kefalidis, Y. Yang, J. Fang, M. S. Hill, M. F. Mahon and
L. Maron, J. Am. Chem. Soc., 2017, 139, 10036–10054.
3
4
4
2
compound 3 undergoes Sn–Ph/Sn–H metathesis, possibly facilitated
by the polarisation of a Sn–C bond through its interaction with
the highly electropositive calcium centre, more rapidly than
further stannane deprotonation to form 4. This process provides
5
A. S. S. Wilson, M. S. Hill, M. F. Mahon, C. Dinoi and L. Maron,
Science, 2017, 358, 1168–1171.
6 (a) A. S. S. Wilson, M. S. Hill and M. F. Mahon, Organometallics, 2019,
8, 351–360; (b) A. S. S. Wilson, C. Dinoi, M. S. Hill, M. F. Mahon and
3
Ph
SnPh
sumption by analogous reaction with Ph
increasingly facile reactions of this nature ultimately provide a
parent calcium stannane derivative, [(BDI)Ca-m -H-(SnH )Ca(BDI)].
4
Sn and a calcium diphenylstannyl derivative, [(BDI)Ca-m
H)Ca(BDI)], which is unobservable due to its rapid con-
SnH. Consecutive and
2
-H-
L. Maron, Angew. Chem., Int. Ed., 2018, 57, 15500–15504; (c) M. S. Hill,
M. F. Mahon, A. S. S. Wilson, C. Dinoi, L. Maron and E. Richards,
Chem. Commun., 2019, 55, 5732–5735.
(
2
3
7
8
9
B. Rosch, T. X. Gentner, H. Elsen, C. A. Fischer, J. Langer, M. Wiesinger
and S. Harder, Angew. Chem., Int. Ed., 2019, 58, 5396–5401.
T. Komiyama, Y. Minami and T. Hiyama, ACS Catal., 2017, 7,
631–651.
(a) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43,
4
2
3
This species will be prone to further Sn–H/Ca–Sn metathesis to
reform compound 1 and produce unstable SnH with the conse-
4
704–4734; (b) M. M. Heravi and L. Mohammadkhani, J. Organomet.
Chem., 2018, 869, 106–200.
calcium- or tin-centred intermediates could be observed, support 10 (a) D. Reed, D. Stalke and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1991,
0, 1459–1460; (b) P. B. Hitchcock, M. F. Lappert, G. A. Lawless and
quent generation of H and elemental tin. Although no further
2
3
for this hypothesis was provided by a further reaction between
B. Royo, J. Chem. Soc., Chem. Commun., 1993, 554–555; (c) B. E. Eichler,
A. D. Phillips and P. P. Power, Organometallics, 2003, 22, 5423–5426;
(d) T. Schollmeier, U. Englich, R. Fischer, I. Prass, K. Ruhlandt-Senge,
M. Schurmann and F. Uhlig, Z. Naturforsch., B: J. Chem. Sci., 2004, 59,
1
119
1
3
compound 3 and n-Bu SnH. Monitoring by H and Sn{ H} NMR
spectroscopy over 40 hours, during which time the reaction again
became black and opaque, confirmed that quantitative conversion
1462–1470; (e) C. Kleeberg, J. Grunenberg and X. L. Xie, Inorg. Chem.,
of Bu SnH to Bu SnPh had occurred.
3
3
2014, 53, 4400–4410; ( f ) J. Jastrzebski, M. van Klaveren and G. van Koten,
Organometallics, 2015, 34, 2600–2607.
1 (a) W. J. Teng and K. Ruhlandt-Senge, Organometallics, 2004, 23,
We are continuing to assess these possibilities and to study
the reactivity of the resultant calcium stannyl and related p-block
centred anions.
1
2
2
694–2700; (b) W. J. Teng and K. Ruhlandt-Senge, Organometallics,
004, 23, 952–956; (c) V. Leich, T. P. Spaniol, L. Maron and J. Okuda,
We acknowledge financial support from the EPSRC Centre
for Doctoral Training in Catalysis (EP/L016443/1) and research
grant EP/R020752/1. This research made use of the Balena High
Chem. Commun., 2014, 50, 2311–2314; (d) N. L. Lampland, A. Pindwal,
K. K. Yan, A. Ellern and A. D. Sadow, Organometallics, 2017, 36,
4546–4557.
1
2 M. Westerhausen, Angew. Chem., Int. Ed. Engl., 1994, 33, 1493–1495.
Performance Computing (HPC) Service at the University of 13 U. Englich, K. Ruhlandt-Senge and F. Uhlig, J. Organomet. Chem.,
2
000, 613, 139–147.
Bath. I. M. thanks the University of Bristol for support and
the Canadian Government for a Canada 150 Research Chair.
1
1
4 B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 1999, 38, 203–264.
5 (a) S. C. Rosca, C. Dinoi, E. Caytan, V. Dorcet, M. Etienne, J. F. Carpentier
and Y. Sarazin, Chem. – Eur. J., 2016, 22, 6505–6509; (b) S. C. Rosca,
E. Caytan, V. Dorcet, T. Roisnel, J. F. Carpentier and Y. Sarazin, Organo-
metallics, 2017, 36, 1269–1277; (c) S. C. Rosca, V. Dorcet, T. Roisnel,
J. F. Carpentier and Y. Sarazin, Dalton Trans., 2017, 46, 14785–14794;
Conflicts of interest
(
2
d) S. C. Rosca, V. Dorcet, J. F. Carpentier and Y. Sarazin, Inorg. Chim. Acta,
018, 475, 59–64; (e) M. F. Zuniga, G. B. Deacon and K. Ruhlandt-Senge,
There are no conflicts to declare.
Inorg. Chem., 2008, 47, 4669–4681; ( f ) W. D. Buchanan, D. G. Allis and
K. Ruhlandt-Senge, Chem. Commun., 2010, 46, 4449–4465.
6 (a) L. Garcia, M. D. Anker, M. F. Mahon, L. Maron and M. S. Hill, Dalton
Trans., 2018, 47, 12684–12693; (b) L. Garcia, M. S. Hil and M. F. Mahon,
Organometallics, 2019, DOI: 10.1021/acs.organomet.9b00493.
Notes and references
1
1
(a) A. G. M. Barrett, M. R. Crimmin, M. S. Hill and P. A. Procopiou,
Proc. R. Soc. A, 2010, 466, 927–963; (b) S. Harder, Chem. Rev., 2010,
1
10, 3852–3876; (c) M. R. Crimmin and M. S. Hill, in Alkaline-Earth 17 (a) J. Pahl, S. Brand, H. Elsen and S. Harder, Chem. Commun., 2018,
Metal Compounds: Oddities and Applications, ed. S. Harder, 2013,
vol. 45, pp. 191–241; (d) M. S. Hill, D. J. Liptrot and C. Weetman,
54, 8685–8688; (b) J. Pahl, A. Friedrich, H. Eisen and S. Harder,
Organometallics, 2018, 37, 2901–2909.
Chem. Soc. Rev., 2016, 45, 972–988; (e) Y. Sarazin and J. F. Carpentier, 18 (a) C. Loh, S. Seupel, H. G o¨ rls, S. Krieck and M. Westerhausen,
Chem. Rec., 2016, 16, 2482–2505.
(a) D. Mukherjee, D. Schuhknecht and J. Okuda, Angew. Chem., Int. Ed.,
Organometallics, 2014, 33, 1480–1491; (b) C. Loh, S. Seupel, A. Koch,
H. G o¨ rls, S. Krieck and M. Westerhausen, Dalton Trans., 2014, 43,
14440–14449; (c) S. O. Hauber, F. Lissner, G. B. Deacon and
M. Niemeyer, Angew. Chem., Int. Ed., 2005, 44, 5871–5875.
2
2
018, 57, 9590–9602; (b) S. Harder and J. Brettar, Angew. Chem., Int. Ed.,
2006, 45, 3474–3478; (c) P. Jochmann, J. P. Davin, T. P. Spaniol, L. Maron
and J. Okuda, Angew. Chem., Int. Ed., 2012, 51, 4452–4455; (d) V. Leich, 19 BS1 = SDDALL for Ca and Sn, 6-31G** for all other atoms, BS2 = cc-
T. P. Spaniol and J. Okuda, Inorg. Chem., 2015, 54, 4927–4933;
pVTZ for Ca, cc-pVTZ-PP for Sn and 6-311++G** for all other atoms.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 12964--12967 | 12967