1170
A. NOCENTINI ET AL.
13. Guzel-Akdemir O, Akdemir A, Pan P, et al. A class of sulfona- 24. (a) Vullo D, Del Prete S, Nocentini A, et al. Dithiocarbamates
mides with strong inhibitory action against the a-carbonic
anhydrase from Trypanosoma cruzi. J Med Chem 2013;56:
5773–81.
effectively inhibit the b-carbonic anhydrase from the dan-
druff-producing fungus Malassezia globosa. Bioorg Med
Chem 2017;25:1260–5. (b) Borras J, Scozzafava A,
Menabuoni L, et al. Synthesis of water-soluble, topically
effective intraocular pressure lowering aromatic/heterocyclic
sulfonamide containing 8-quinoline-sulfonyl moieties: is the
tail more important than the ring? Bioorg Med Chem 1999;
7:2397–406. (c) Supuran CT. Carbon-versus sulphur-based
zinc binding groups for carbonic anhydrase inhibitors? J
Enzyme Inhib Med Chem 2018;33:485–95. (d) Pastorekova S,
Casini A, Scozzafava A, et al. Carbonic anhydrase inhibitors:
the first selective, membrane-impermeant inhibitors target-
ing the tumor-associated isozyme IX. Bioorg Med Chem Lett
2004;14:869–73.
14. Alafeefy AM, Ceruso M, Al-Jaber NA, et al. A new class of
quinazoline-sulfonamides acting as efficient inhibitors
against the a-carbonic anhydrase from Trypanosoma cruzi.
J Enzyme Inhib Med Chem 2015;30:581–5.
15. Pan P, Vermelho AB, Scozzafava A, et al. Anion inhibition
studies of the a-carbonic anhydrase from the protozoan
pathogen Trypanosoma cruzi, the causative agent of Chagas
disease. Bioorg Med Chem 2013;21:4472–6.
16. Rodrigues GC, Feijo DF, Bozza MT, et al. Design, synthesis,
and evaluation of hydroxamic acid derivatives as promising
agents for the management of Chagas disease. J Med Chem
2014;57:298–308.
25. (a) Supuran CT. Carbonic anhydrases: from biomedical appli-
cations of the inhibitors and activators to biotechnological
use for CO2 capture. J Enzyme Inhib Med Chem 2013;28:
229–30. (b) Supuran CT. How many carbonic anhydrase
inhibition mechanisms exist? J Enzyme Inhib Med Chem
2016;31:345–60. (c) Ibrahim HS, Allam HA, Mahmoud WR,
et al. Dual-tail arylsulfone-based benzenesulfonamides differ-
ently match the hydrophobic and hydrophilic halves of
human carbonic anhydrases active sites: selective inhibitors
for the tumor-associated hCA IX isoform. Eur J Med Chem
2018;152:1–9. (d) Supuran CT. Applications of carbonic anhy-
drases inhibitors in renal and central nervous system dis-
eases. Expert Opin Ther Pat 2018;28:713–21. (e) Supuran CT.
Carbonic anhydrase inhibitors and their potential in a range
of therapeutic areas. Expert Opin Ther Pat 2018;28:709–12.
26. (a) Entezari Heravi Y, Bua S, Nocentini A, et al. Inhibition of
Malassezia globosa carbonic anhydrase with phenols. Bioorg
Med Chem 2017;25:2577–82. (b) Tars K, Vullo D, Kazaks A,
et al. Sulfocoumarins (1,2-benzoxathiine 2,2-dioxides): a class
of potent and isoform-selective inhibitors of tumor-associ-
ated carbonic anhydrases. J Med Chem 2013;56:293–300. (c)
17. Nocentini A, Cadoni R, Dumy P, et al. Carbonic anhydrases
from Trypanosoma cruzi and Leishmania donovani chagasi
are inhibited by benzoxaboroles. J Enzyme Inhib Med Chem
2018;33:286–9.
18. Bonardi A, Vermelho AB, da Silva Cardoso V, et al. N-nitro-
sulfonamides as carbonic anhydrase inhibitors: a promising
chemotype for targeting Chagas disease and leishmaniasis.
ACS Med Chem Lett 2019;10:413–8.
19. Nocentini A, Vullo D, Bartolucci G, et al. N-
Nitrosulfonamides: a new chemotype for carbonic anhydrase
inhibition. Bioorg Med Chem 2016;24:3612–7.
20. (a) Supuran CT. Structure and function of carbonic anhy-
drases. Biochem
J 2016;473:2023–32. (b) Supuran CT.
Advances in structure-based drug discovery of carbonic
anhydrase inhibitors. Expert Opin Drug Discov 2017;12:
61–88. (c) Supuran CT. Carbonic anhydrases: novel thera-
peutic applications for inhibitors and activators. Nat Rev
Drug Discov 2008;7:168–81. (d) Neri D, Supuran CT.
Interfering with pH regulation in tumours as a therapeutic
strategy. Nat Rev Drug Discov 2011;10:767–77. (e) Supuran
CT, Vullo D, Manole G, et al. Designing of novel carbonic
anhydrase inhibitors and activators. Curr Med Chem
Cardiovasc Hematol Agents 2004;2:49–68. (f) Alterio V, Di
Fiore A, D’Ambrosio K, et al. Multiple binding modes of
inhibitors to carbonic anhydrases: how to design specific
drugs targeting 15 different isoforms? Chem Rev 2012;112:
4421–68.
ꢂ
Pustenko A, Stepanovs D, Zalubovskis R, et al. 3H-1,2-ben-
zoxathiepine 2,2-dioxides: a new class of isoform-selective
carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem
2017;32:767–75. (d) Briganti F, Pierattelli R, Scozzafava A,
Supuran CT. Carbonic anhydrase inhibitors. Part 37. Novel
classes of carbonic anhydrase inhibitors and their interaction
with the native and cobalt-substituted enzyme: kinetic and
spectroscopic investigations. Eur J Med Chem 1996;31:
1001–10. (e) Carta F, Scozzafava A, Supuran CT.
Sulfonamides: a patent review (2008–2012). Expert Opin
Ther Pat 2012;22:747–58.
21. Nocentini A, Trallori E, Singh S, et al. 4-Hydroxy-3-nitro-5-
ureido-benzenesulfonamides selectively target the tumor-
associated carbonic anhydrase isoforms IX and XII showing
hypoxia-enhanced antiproliferative profiles. J Med Chem
2018;61:10860–74.
27. (a) Nocentini A, Gratteri P, Supuran CT. Phosphorus versus
sulfur: discovery of benzenephosphonamidates as versatile
sulfonamide-mimic chemotypes acting as carbonic anhy-
drase inhibitors. Chem Eur J 2019;25:1188–92. (b) Supuran
CT. Carbonic anhydrase inhibitors in the treatment and
prophylaxis of obesity. Expert Opin Ther Pat 2003;13:
1545–50. (c) Winum JY, Temperini C, El Cheikh K, et al.
Carbonic anhydrase inhibitors: clash with Ala65 as a means
for designing inhibitors with low affinity for the ubiquitous
isozyme II, exemplified by the crystal structure of the topira-
mate sulfamide analogue. J Med Chem 2006;49:7024–31.
28. Nocentini A, Ceruso M, Bua S, et al. Discovery of b-adrener-
gic receptors blocker-carbonic anhydrase inhibitor hybrids
for multitargeted antiglaucoma therapy. J Med Chem 2018;
61:5380–94.
22. Khalifah RG. The carbon dioxide hydration activity of car-
bonic anhydrase. J Biol Chem 1971;246:2561–73.
23. (a) Nocentini A, Cadoni R, Del Prete S, et al. Benzoxaboroles
as efficient inhibitors of the b-carbonic anhydrases from
pathogenic fungi: activity and modeling study. ACS Med
€
Chem Lett 2017;8:1194–8. (b) Kohler K, Hillebrecht A,
Schulze Wischeler J, et al. Saccharin inhibits carbonic anhy-
drases: possible explanation for its unpleasant metallic after-
taste. Angew Chem Int Ed Engl 2007;46:7697–9. (c) Supuran
CT. Carbonic anhydrase activators. Future Med Chem 2018;
10:561–73. (d) Clare BW, Supuran CT. Carbonic anhydrase
activators. 3: structure–activity correlations for a series of
isozyme II activators. J Pharm Sci 1994;83:768–73. (e) De
Simone G, Supuran CT. (In)organic anions as carbonic anhy-
drase inhibitors. J Inorg Biochem 2012;111:117–29.