Eagon et al.
JOCArticle
case of R,β-ynones, many of the early reagents used to reduce
these substrates to highly enantioenriched propargyl alcohols
were boron-based compounds, such as M. Midland’s highly
SCHEME 1. Reduction of 2-Cyclohexene-1-one with TarB-
NO and NaBH
2
4
7
enantioselective reagent Alpine-Borane (B-isopinocampheyl-
9-borabicyclo[3.3.1]nonane), which continues to find modern
8
synthetic applications. Another early boron-based reagent
reported to reduce ynones was the saccharide derived
K-Glucoride reagent (potassium 9-O-(1,2:5,6-di-O-isopropy-
lidinene-5-deoxy-R-D-glucofuranosyl)-9-boratabicyclo[3.3.1]-
9
allylic alcohols have recently been prepared with enantiose-
lective reduction agents from R,β-unsaturated ketones in a
variety of recent syntheses including Mycorrhizin A, cyclo-
nonane). More recent asymmetric reduction reagents used
1
with these substrates include ruthenium catalysts, gallium
0
1
catalysts, and enzymes.
1
12
15
16
17
hexenyl nucleosides, Symbiodinolide, Brasilinolides, and
18
Though there are many procedures for the reduction of
R,β-unsaturated ketones to optically active allylic and pro-
pargyl alcohols, each has limitations. Heavy transition metals
are often acutely toxic and their removal, especially in the
preparation of pharmaceutical reagents, is not always trivial.
Enzymatic reductions often require a water-soluble substrate
and/or large excesses of microbial enzymes. Pinene-based
boron reduction reagents such as Alpine-Borane and DIP-Cl
also often require superstoichiometric quantities and extended
reaction times to achieve maximal enantioselectivity. The
advent of the CBS reagent provided a more convenient
boron-mediated reduction procedure, but it often requires
low temperatures (-78 °C), an excess of reagent, and/or
modification of the borane source to achieve the best enanti-
oselectivity and to avoid hydroboration of the alkene or
alkyne. A Ru-BINAP transfer hydrogenation procedure
has been reported by Noyori that can reduce unsaturated
ketones without reduction or migration of the olefinic bond
with good enantioselectivities for some cyclic and acyclic
alkenyl ketones, but these catalysts were unable to reduce
1
9
(þ)-Spongistatin 1. Chiral propargyl alcohols have also been
used as intermediates in several recent syntheses, including
(
2
0
21
22
þ)-Brefeldin, Spicigerolide, Balfilomycin A1, Leiocarpin
23
C, and (þ)-Goniodiol. Some bioactive molecules also contain
chiral propargyl alcohols, such as the potent prostacyclin
analogue Cicaprost and the antibacterial Uncialamycin.
2
4
The great utility of these reagents necessitates the search for
improved methods for the enantioselective reduction of pro-
chiral R,β-unsaturated alkenyl and alkynyl ketones.
Results and Discussion
Reduction of r,β-Alkenyl Ketones. We first sought to
investigate the reduction of cyclic R,β-unsaturated alkenyl
ketones with TarB-NO to see if we could achieve both good
enantioselectivity and regioselectivity for 1,2-reduction to pro-
2
25
duce the chiral allylic alcohol. When we reduced 2-cyclohexen-
1-one with TarB-NO and NaBH , we observed mainly the
2 4
1,4-reduction product cyclohexanone with the slightly enantioen-
riched 1,2-reduction product 2-cyclohexen-1-ol (Scheme 1).
We screened a variety of hydrides and discovered that by
replacing NaBH with NaBH(OAc) we were able to isolate
1
3
R,β-ynones. Noyori, however, developed an alternative
specialized family of ruthenium transfer hydrogenation cat-
alysts that were able to reduce ynones to the corresponding
4
3
only the desired 1,2-reduction product. However, we were
never able to achieve enantioselectivities above 33%. Pre-
vious reduction studies with TarB-NO indicated that a large
1
4
propargyl alcohols with excellent asymmetric induction.
Despite these preparative challenges, chiral allylic and
propargylic alcohols remain extremely useful intermediates
and are widespread throughout the synthetic literature. Chiral
2
steric difference between the substituents flanking the car-
26
bonyl was required to achieve maximal induction. To this
end, we sought more functionalized substrates which could
enhance the enantioselectivity of the reduction. Initially we
(
4) (a) Musa, M.; Ziegelmann-Fjeld, K.; Vieille, C.; Zeikus, J.; Phillips, R.
J. Org. Chem. 2007, 72, 30. (b) Polland, D; Telari, K.; Lane, J.; Humphrey,
G.; McWilliams, C.; Nidositko, S.; Salmon, P.; Moore, J. Biotechnol. Bioeng.
2
2
006, 93, 674. (c) Zagozda, M.; Plenkiewicz, J. Tetrahedron: Asymmetry
006, 17, 1958.
(15) Yu, B.; Jiang, T.; Quan, W.; Li, J.; Pan., X.; She, X. Org. Lett. 2009,
11, 629.
(
(
5) Lovchik, M.; Goeke, A.; Frater, G. J. Org. Chem. 2007, 72, 2427.
6) (a) Corey, E. J.; Bakshi, R.; Shibata, S.; Chen, C.; Singh, V. J. Am.
(16) Ferrer, E.; Alibes, R.; Busque, F.; Figueredo, M.; Font, J.; de March,
P. J. Org. Chem. 2009, 74, 2425.
Chem. Soc. 1987, 109, 7925. (b) Cho, B. T. Tetrahedron 2006, 62, 7621.
c) Holub, N.; Neidhofer, J.; Blechert, S. Org. Lett. 2007, 9, 513. (d) Kita, Y.;
Futamura, J.; Ohba, Y.; Sawama, Y.; Ganesh, J.; Fujioka, H. J. Org. Chem.
003, 68, 5917.
7) Midland, M.; Tramontano, A.; Kazubski, A.; Graham, R.; Tsai, D.;
Cardin, D. Tetrahedron 1984, 40, 1371.
8) (a) Gopalsamuthriam, V.; Predeus, A.; Huang, R.; Wulff, R. J. Am.
Chem. Soc. 2009, 131, 18018. (b) Desrat, S.; Weghe, P. J. Org. Chem. 2009,
4, 6728.
(17) Takamura, H.; Kadonaga, H.; Yamano, Y.; Han, C.; Kadota, I.;
Uemura, D. Tetrahedron 2009, 65, 7449.
(18) Paterson, I.; Burton, P.; Cordier, C.; Housden, M.; Muhlthan, F.;
Loiseleur, O. Org. Lett. 2009, 11, 693.
(19) Smith, A.; Sfouggatakis, C.; Risatti, C.; Sperry, J.; Zhu, W.; Doughty,
V.; Tomoika, T.; Gotchev, D.; Bennett, C.; Sakamoto, S.; Atasoylu, O.; Shohei,
S.; Bauer, D.; Takeuchi, M.; Makoto, J.; Sakamoto, Y. Tetrahedron 2009, 65,
6489.
(20) Kim, M.; Kim, H.; Tae, J. Synlett 2009, 8, 1303.
(21) Georges, Y.; Ariza, X.; Garcia, J. J. Org. Chem. 2009, 74, 2008.
(22) Kleinbeck, F.; Carriera, E. Angew. Chem., Int. Ed. 2009, 48, 578.
(23) Yadav, J.; Premalatha, K.; Harshavardhan, S.; Subba Reddy, B.
Tetrahedron Lett. 2008, 49, 6765.
(24) (a) Gais, H.; Kramp, G.; Wolters, D.; Reddy, L. Chem.;Eur. J. 2006,
12, 5610. (b) Skuballa, W.; Schillinger, E.; Sturzebecher, C.; Vorbruggen, H.
J. Med. Chem. 1986, 29, 313. (c) Davies, J.; Wang, H.; Taylor, T.; Warabi, K.;
Huang, X. Org. Lett. 2005, 7, 5233.
(25) Kim, J.; Brunigh, J.; Park, K.; Lee, D.; Singaram, B. Org. Lett. 2009,
11, 4358.
(26) (a) Eagon, S. C.; Kim, J.; Yan, K.; Haddenham, D.; Singaram, B.
Tetrahedron Lett. 2007, 48, 9025. (b) Eagon, S. C.; Kim, J.; Singaram, B.
Synthesis 2008, 23, 3874.
(
2
(
(
7
(
(
9) Cho, B.; Park, W. Bull. Korean Chem. Soc. 1987, 8, 257.
10) (a) Morris, D.; Hayes, A.; Wills, M. J. Org. Chem. 2006, 71, 7035.
(
b) Tanaka, K.; Shoji, T. Org. Lett. 2005, 7, 3561.
11) (a) Ford, A.; Woodward, S. Angew. Chem., Int. Ed. 1999, 38, 335.
b) Blake, A.; Cunningham, A.; Ford, A.; Teat, S.; Woodward, S. Chem.;
(
(
Eur. J. 2000, 6, 3586.
12) Schubert, T.; Hummel, W.; Kula, M.; Muller, M. Eur. J. Org. Chem.
001, 4181.
13) (a) Ohkuma, T.; Ikehira, H.; Ikaria, T.; Noyori, R. Synlett 1997, 467.
b) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995,
17, 10417.
14) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1997, 119, 8738.
(
2
(
(
1
(
7
718 J. Org. Chem. Vol. 75, No. 22, 2010