10.1002/chem.201901439
Chemistry - A European Journal
FULL PAPER
For
a
detailed description of all calculations, see the Supporting
[4]
a) B. Schweitzer-Chaput, J. Demaerel, H. Engler, M. Klussmann,
Angew. Chem. Int. Ed. 2014, 53, 8737; b) E. Boess, S. Karanestora, A.-
E. Bosnidou, B. Schweitzer-Chaput, M. Hasenbeck, M. Klussmann,
Synlett 2015, 26, 1973; c) X.-F. Xia, S.-L. Zhu, M. Zeng, Z. Gu, H.
Wang, W. Li, Tetrahedron 2015, 71, 6099; d) S.-L. Zhu, P.-X. Zhou, X.-
F. Xia, RSC Adv. 2016, 6, 63325; e) C.-S. Wang, T. Roisnel, P. H.
Dixneuf, J.-F. Soulé, Adv. Synth. Catal. 2019, 361, 445.
Information, Computational Part.
For the computational investigations, the conformational space for each
structure was explored using the OPLS-2005 force field[34] and a modified
Monte Carlo search algorithm implemented in MacroModel.[35] An energy
cut-off of 84 kJ mol–1 was employed for the conformational analysis, and
structures with heavy-atom root-mean-square deviations (RMSD) up to 2
Å after the initial force field optimizations were considered to be the same
conformer. Radical stabilization enthalpies (RSE) as well as the
ionization potentials (IP), electron affinities (EA), chemicals hardness (η),
[5]
[6]
a) W. Liu, Y. Li, K. Liu, Z. Li, J. Am. Chem. Soc. 2011, 133, 10756; b) L.
Lv, B. Shen, Z. Li, Angew. Chem. Int. Ed. 2014, 53, 4164.
a) C. Gambarotti, L. Melone, C. Punta, G. Raffaini, Photocatalytic
Minisci Reaction: A Promising and Eco-friendly Route to Functionalize
Heteroaromatics of Biological Interest in Green Synthetic Approaches
for Biologically Relevant Heterocycles (Ed.: G. Brahmachari), Elsevier,
Boston, 2015, pp. 339; b) J. Tauber, D. Imbri, T. Opatz, Molecules 2014,
19, 16190; c) M. A. J. Duncton, MedChemComm 2011, 2, 1135.
F. Minisci, E. Vismara, F. Fontana, G. Morini, M. Serravalle, C.
Giordano, J. Org. Chem. 1986, 51, 4411.
chemical potential (μ), and the charge-transfer configurations (∆ECT
)
were calculated using the G3(MP2)-RAD method.[36]
For the closer analysis of the reaction mechanism, all structures were
optimized with the dispersion-corrected B3LYP[37] functional with
Grimme’s dispersion correction D3BJ (Becke-Johnson-damping)[38] and
the double-ζ basis set 6-31+G(d,p). For these DFT calculations, an
ultrafine grid was used for the numerical integration of the density.
Vibrational analysis verified that each structure was a minimum or
transition state. Electronic energies were subsequently calculated
employing Neese's domain-based local pair-natural orbital (DLPNO)
approach to the CCSD(T) method [DLPNO-CCSD(T)] with the default
normal PNO settings,[39] the triple-ζ aug-cc-pVTZ basis set,[40] and the
CPCM continuum model for diethyl ether.[41] All density functional theory
calculations were performed with Gaussian 09.[42] The wave-function
calculations involved in the G3(MP2)-RAD scheme were performed with
MOLPRO2015,[43] while the DLPNO-CCSD(T) calculations were carried
out with ORCA 4.[44]
[7]
[8]
For selected examples, see: a) T. Caronna, R. Galli, V. Malatesta, F.
Minisci, J. Chem. Soc. C 1971, 1747; b) F. Fontana, F. Minisci, M. C.
Nogueira Barbosa, E. Vismara, J. Org. Chem. 1991, 56, 2866; c) F.
Fontana, F. Minisci, M. Y. Yong, Z. Lihua, Tetrahedron Lett. 1993, 34,
2517; d) Y. Siddaraju, M. Lamani, K. R. Prabhu, J. Org. Chem. 2014,
79, 3856; e) J. Chen, M. Wan, J. Hua, Y. Sun, Z. Lv, W. Li, L. Liu, Org.
Biomol. Chem. 2015, 13, 11561; f) A. Srinivasulu, B. Shantharjun, D.
Vani, K. C. Ashalu, A. Mohd, J. Wencel-Delord, F. Colobert, K. R.
Reddy, Eur. J. Org. Chem. 2019, 1815.
[9]
a) R. Binkley, E. Binkley, Radical Reactions of Carbohydrates, Volume
I: Structure and Reactivity of Carbohydrate Radicals, 2013,
Radom, Angew. Chem. Int. Ed. 2001, 40, 1340.
[10] For an excellent discussion of this concept, see Chapter 7 in ref. 9a.
[11] a) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584; b) H. Mayr,
Tetrahedron 2015, 71, 5095; c) H. Mayr, A. R. Ofial, Acc. Chem. Res.
2016, 49, 952.
Acknowledgements
[12] K. Héberger, A. Lopata, J. Org. Chem. 1998, 63, 8646.
[13] a) M. J. Jones, G. Moad, E. Rizzardo, D. H. Solomon, J. Org. Chem.
1989, 54, 1607; b) K. Héberger, A. Lopata, J. C. Jászberényi, J. Phys.
Org. Chem. 2000, 13, 151; c) J. Lalevée, X. Allonas, J.-P. Fouassier, J.
Phys. Chem. A 2004, 108, 4326; d) J. Lalevée, X. Allonas, J.-P.
Fouassier, J. Org. Chem. 2005, 70, 814; e) M. L. Poutsma, J. Phys.
Org. Chem. 2008, 21, 758.
Support from the DFG (KL 2221/4-2, Heisenberg scholarship to
M. K.), the Fonds der chemischen Industrie (Liebig scholarship
to M.B. and PhD scholarship to J. S.), the Chinese Scholarship
Council (scholarship to H.-L. Y.), the University of Cologne
within the excellence initiative, and Prof. Benjamin List (support
of M. S. P.) is gratefully acknowledged. We are grateful to the
Regional Computing Center of the University of Cologne for
providing computing time of the DFG-funded High Performance
Computing (HPC) System CHEOPS as well as for their support.
[14] a) T. Zytowski, B. Knühl, H. Fischer, Helv. Chim. Acta 2000, 83, 658; b)
J. Lalevée, X. Allonas, J. P. Fouassier, J. Org. Chem. 2006, 71, 9723.
[15] a) Substituent Effects in Radical Chemistry, Vol. 189, NATO ASI Series,
Series C: Mathematical and Physical Sciences, (Eds.: H. G. Viehe, Z.
Janousek, R. Merényi), D. Reidel Publishing Company, Dordrecht,
1986; b) A. R. Cherkasov, M. Jonsson, V. I. Galkin, R. A. Cherkasov,
Russ. Chem. Rev. 2001, 70, 1.
Keywords: radicals • philicity • aromatic substitution • linear free
energy relationships • substituent effects
[16] a) F. De Vleeschouwer, V. Van Speybroeck, M. Waroquier, P.
Geerlings, F. De Proft, Org. Lett. 2007, 9, 2721; b) F. De Vleeschouwer,
P. Geerlings, F. De Proft, Theor. Chem. Acc. 2012, 131, 1245; c) L. R.
Domingo, P. Perez, Org. Biomol. Chem. 2013, 11, 4350.
[1]
[2]
M. Klussmann, Chem. Eur. J. 2018, 24, 4480.
B. Schweitzer-Chaput, T. Kurtén, M. Klussmann, Angew. Chem. Int. Ed.
2015, 54, 11848.
[17] C. De Dobbeleer, J. Pospíšil, F. De Vleeschouwer, F. De Proft, I. E.
Markó, Chem. Commun. 2009, 2142.
[3]
For alternative methods, see for example: a) G. I. Nikishin, G. V.
Somov, A. D. Petrov, Russ. Chem. Bull. 1961, 10, 1924; b) U. Linker, B.
Kersten, T. Linker, Tetrahedron 1995, 51, 9917; c) B. B. Snider, Chem.
Rev. 1996, 96, 339; d) T. Iwahama, S. Sakaguchi, Y. Ishii, Chem.
Commun. 2000, 2317; e) J. Xie, Z.-Z. Huang, Chem. Commun. 2010,
46, 1947; f) H. Wang, L.-N. Guo, X.-H. Duan, Chem. Commun. 2013,
49, 10370; g) L. Zhu, H. Chen, Z. Wang, C. Li, Org. Chem. Front. 2014,
1, 1299; h) X.-W. Lan, N.-X. Wang, W. Zhang, J.-L. Wen, C.-B. Bai, Y.
Xing, Y.-H. Li, Org. Lett. 2015, 17, 4460; i) M. Anselmo, A. Basso, S.
Protti, D. Ravelli, ACS Catal. 2019, 9, 2493; j) Y. Li, J.-Q. Shang, X.-X.
Wang, W.-J. Xia, T. Yang, Y. Xin, Y.-M. Li, Org. Lett. 2019, 21, 2227.
[18] a) Formyl and acetyl radicals have been investigated computationally in
ref. 16b and 16c, respectively; b) for an interesting account of acyl
radicals behaving as electrophiles due to orbital interactions in the
transition state of the attack on imines, see: C. H. Schiesser, U. Wille, H.
Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303.
[19] Synthesized in analogy to a reaction with 2-picoline, see: E. Profft, F.
Schneider, J. Prakt. Chem. 1955, 2, 316.
[20] The acetonyl radical was shown not to attack protonated pyridine
directly in a three-component reaction, which was explained by its
electrophilic character, see: F. Minisci, A. Citterio, C. Giordano, Acc.
Chem. Res. 1983, 16, 27.
This article is protected by copyright. All rights reserved.