Rhenium-Catalyzed Oxidative Cyanation of Tertiary Amines
4.42–4.39 (m, 1 H), 4.13–4.09 (m, 1 H), 4.08–4.05 (m, 1 H), 1.80–
1.75 (m, 1 H), 1.03–1.00 (m, 3 H), 0.98–0.90 (m, 3 H) ppm.
[1]
For selected reviews on C–H functionalization, see: a) J.-Q. Yu,
Z.-J. Shi, C–H Activation, Springer, Berlin, 2010; b) X. Chen,
K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. 2009, 121,
5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115; c)
D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010,
110, 624–655; d) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder,
J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931; e)
L. Ackermann, Chem. Rev. 2011, 111, 1315–1345; f) J. Wencel-
Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40,
4740–4761; g) T. Bruckl, R. D. Baxter, Y. Ishihara, P. S. Baran,
Acc. Chem. Res. 2012, 45, 826–839; h) P. B. Arockiam, C. Bru-
neau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879–5918; i) K. M.
Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45,
788–802; j) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ell-
man, Acc. Chem. Res. 2012, 45, 814–825; k) S. R. Neufeldt,
M. S. Sanford, Acc. Chem. Res. 2012, 45, 936–946; l) L. G.
Mercier, M. Leclerc, Acc. Chem. Res. 2013, 46, 1597–1605; m)
J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375.
For selected reviews on C(sp3)–H functionalization, see: a)
R. H. Crabtree, J. Organomet. Chem. 2004, 689, 4083–4091; b)
K. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084; c) R.
Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin,
Chem. Eur. J. 2010, 16, 2654–2672; d) J. F. Hartwig, Chem. Soc.
Rev. 2011, 40, 1992–2002; e) H. Li, B.-J. Li, Z.-J. Shi, Catal.
Sci. Technol. 2011, 1, 191–206; f) T. A. Ramirez, B. G. Zhao,
Y. Shi, Chem. Soc. Rev. 2012, 41, 931–942; g) O. Baudoin,
Chem. Soc. Rev. 2011, 40, 4902–4911.
1
1b: H NMR (300 MHz, CDCl3): δ = 12.4 (s, 1 H), 7.67–7.61 (m,
1 H), 7.40–7.37 (m, 1 H), 7.02–6.99 (m, 1 H), 6.87–6.85 (m, 1 H),
4.47–4.45 (m, 2 H), 3.95- 3.92 (m, 1 H), 1.92–1.89 (m, 1 H), 1.67–
1.65 (m, 1 H), 1.42–1.40 (m, 2 H), 1.02–0.99 (m, 3 H), 0.97–0.95
(m, 3 H) ppm.
Typical Procedure for the Synthesis of Oxorhenium Oxazoline Com-
plexes: Ligand 1a or 1b (1 mmol) was dissolved in ethanol (50 mL),
followed by 2,6-lutidene (0.29 mL, 1 mmol). ReOCl2(OPPh3)-
(SMe2) (299 mg, 0.46 mmol) was added to the flask within 5 min.
The solution was heated at reflux under an atmosphere of argon
for 4 h, cooled to room temperature, and filtered to yield a green
solid, which was washed with cold ether (3ϫ10 mL) and then
dried.[20]
1
Re-Pr: Dark green powder (223 mg, 75%); m.p. 251 °C. H NMR
[2]
[3]
(300 MHz, CDCl3): δ = 7.91 (d, J = 7.5 Hz, 1 H), 7.73 (d, J =
7.5 Hz, 1 H), 7.46–7.40 (m, 1 H), 7.26–7.21 (m, 1 H), 6.97–6.92 (m,
1 H), 6.85–6.72 (m, 3 H), 5.17–5.14 (m, 1 H), 4.91–4.87 (m, 2 H),
4.69–4.67 (m, 1 H), 4.60–4.57 (m, 1 H), 4.45–4.39 (m, 1 H), 2.98–
2.86 (m, 2 H), 1.10–1.05 (m, 12 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 178.8, 171.4, 168.4, 164.5, 136.5, 130.8, 121.7, 119.5,
118.3, 110.1, 109.1, 76.3, 69.6, 67.9, 29.0, 19.3, 18.5, 15.1,
14.1 ppm. HRMS (ESI): calcd. for [C24H28N2O5Re]+ 609.1526;
found 609.1523.
For selected reviews on C(sp3)–H functionalization in organic
Synthesis see: a) K. Godula, D. Sames, Science 2006, 312, 67–
72; b) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–
424; c) W. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40,
1976–1991; for selected examples of catalytic C(sp3)–H func-
tionalization in the syntheses of complex molecules, see: d)
H. M. L. Davies, X. Dai, M. S. Long, J. Am. Chem. Soc. 2006,
128, 2485–2490; e) E. M. Stang, M. C. White, Nat. Chem. 2009,
1, 547–551; f) M. Chaumontet, R. Piccardi, O. Baudoin, An-
gew. Chem. 2009, 121, 185–188; Angew. Chem. Int. Ed. 2009,
48, 179–182; g) Y. Feng, G. Chen, Angew. Chem. 2010, 122,
970–973; Angew. Chem. Int. Ed. 2010, 49, 958–961; h) W. R.
Gutekunst, P. S. Baran, J. Am. Chem. Soc. 2011, 133, 19076–
19079.
Re-Bu: Bright green powder (254 mg, 82%); m.p. 265 °C. 1H NMR
(300 MHz, CDCl3): δ = 7.82 (s, 1 H), 7.65 (d, J = 1.5 Hz, 1 H),
7.27–7.22 (m, 1 H), 7.07–7.04 (m, 1 H), 6.89–6.86 (m, 1 H), 6.68–
6.58 (m, 3 H), 5.51–5.49 (m, 1 H), 4.95–4.91 (m, 2 H), 4.80–4.78
(m, 1 H), 4.64–4.59 (m, 1 H), 4.48–4.46 (m, 1 H), 2.63–2.54 (m, 2
H), 1.84–1.40 (m, 2 H) 1.10–0.92 (m, 8 H) ppm. 13C NMR
(75 MHz, CDCl3): δ = 178.1, 171.4, 167.9, 164.5, 136.0, 130.9,
130.2, 122.3, 121.8, 118.7, 117.4, 109.9, 109.4, 73.8, 69.4, 68.1, 43.8,
42.7, 41.8, 25.6, 23.9, 21.9, 21.5, 21.2 ppm. HRMS (ESI): calcd. for
[C26H32N2O5Re]+, 637.1846; found 637.1835.
Typical Procedure for the Oxidative Cyanation of Tertiary Amines
Catalyzed by Re-Bu: A mixture of the amine (0.5 mmol), trimethyl-
silyl cyanide (0.6 mmol), Re-Bu (5 mol-%), and TBHP (5–6 m in
decane, 1.25 mmol) was stirred at room temperature for 5 h. At the
end of the reaction, as monitored by TLC, the reaction was
quenched by the addition of a saturated solution of NaHCO3
(2 mL), and the mixture was extracted with ethyl acetate (3–5 mL).
The combined organic layer was washed with brine, dried with an-
hydrous Na2SO4, and concentrated under reduced pressure to give
the crude product, which was purified by column chromatography
on silica gel. The fraction was collected and concentrated to give
the desired product.
[4]
[5]
a) D. Lucet, T. Le Gall, C. Mioskowski, Angew. Chem. 1998,
110, 2724–2772; Angew. Chem. Int. Ed. 1998, 37, 2580–2627;
b) D. Enders, J. P. Shilvock, Chem. Soc. Rev. 2000, 29, 359–
373.
a) S.-I. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am.
Chem. Soc. 2003, 125, 15312–15313; b) M. North, Angew.
Chem. 2004, 116, 4218–4220; Angew. Chem. Int. Ed. 2004, 43,
4126–4128; c) S.-I. Murahashi, N. Komiya, H. Terai, Angew.
Chem. 2005, 117, 7091–7093; Angew. Chem. Int. Ed. 2005, 44,
6931–6933; d) S.-I. Murahashi, D. Zhang, Chem. Soc. Rev.
2008, 37, 1490–1501; e) S. Verma, S. L. Jain, B. Sain, Catal.
Lett. 2011, 141, 882–885.
a) W. Han, A. R. Ofial, Chem. Commun. 2009, 5024–5026; b)
P. Liu, Y. G. Liu, E. L.-M. Wong, S. Xiang, C.-M. Che, Chem.
Sci. 2011, 2, 2187–2195.
S. Singhal, S. L. Jain, B. Sain, Chem. Commun. 2009, 2371–
2372.
[6]
Supporting Information (see footnote on the first page of this arti-
1
cle): H NMR and 13C NMR spectra, mass spectra, and crystallo-
[7]
graphic details.
[8]
K. Alagiri, K. R. Prabhu, Org. Biomol. Chem. 2012, 10, 835–
842.
[9]
Y. Zhang, H. Peng, M. Zhang, Y.-X. Cheng, C.-J. Zhu, Chem.
Commun. 2011, 47, 2354–2356.
Acknowledgments
[10]
a) Y. Kuninobu, Y. Nishina, M. Shouho, K. Takai, Angew.
Chem. 2006, 118, 2832–2834; Angew. Chem. Int. Ed. 2006, 45,
2766–000; b) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem.
Soc. 2005, 127, 13498–13499; c) Y. Horino, Angew. Chem. 2007,
119, 2192–2194; Angew. Chem. Int. Ed. 2007, 46, 2144–2146;
d) Y. Kuninobu, Y. Nishina, T. Matsuki, K. Takai, J. Am.
Chem. Soc. 2008, 130, 14062–14063; e) Y. Kuninobu, A. Ka-
The authors gratefully acknowledge the National Natural Science
Foundation of China (NSFC) (grant numbers 21172106,
21074054), the National Basic Research Program of China (grant
number 2010CB923303), and the Research Fund for the Doctoral
Program of Higher Education of China (grant number
20120091110010) for their financial support.
Eur. J. Org. Chem. 2013, 7286–7290
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7289