3078
W. Tang et al. / Tetrahedron Letters 43 (2002) 3075–3078
high ee’s, although the yield was moderate (entry 13).
Good yield and excellent ee’s were also obtained for
a-methyl styrene (entry 14).
3. (a) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.;
Itoh, K. J. Am. Chem. Soc. 1994, 116, 2223–2224; (b)
Nishiyama, H.; Itoh, Y.; Sugawara, Y.; Matsumoto, H.;
Aoki, K.; Itoh, K. Bull. Chem. Soc. Jpn. 1995, 68,
1247–1262.
4. (a) Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron 2000, 56,
3501–3509; (b) Uchida, T.; Irie, R.; Katsuki, T. Synlett
1999, 1793–1795; (c) Uchida, T.; Irie, R.; Katsuki, T.
Synlett 1999, 1163–1165.
In conclusion, we have discovered a new and efficient
chiral ruthenium catalyst 6, which has been successfully
applied in catalytic asymmetric cyclopropanation. It is
noteworthy that high ee’s have been reached for trans
cyclopropanation products with the easily accessible
and cheap ethyl diazoacetate as the reagent and low
catalyst loading (1 mol%) has been achieved. Since
NOBIN can be easily prepared and resolved, our ruthe-
nium catalyst 6 is potentially practical for the synthesis
of a variety of chiral cyclopropane compounds. Further
studies are focused on structural modifications of the
ruthenium complex as well as its applications for other
asymmetric reactions and this progress will be reported
in due course.
5. Munslow, I. J.; Gillespie, K. M.; Deeth, R. J.; Scott, P.
Chem. Commun. 2001, 1638.
6. For the synthesis of NOBIN, see: (a) Smrcˇina, M.;
Lorenc, M.; Hanusˇ, V.; Kocˇovsky, P. Synlett 1991, 231;
(b) Smrcˇina, M.; Vyskocˇil, S.; Polivkova´, J.; Pola´kova´, J.;
Kocˇovsky`, P. Collect. Czech. Chem. Commun. 1996, 61,
1520–1524; (c) Ding, K.; Xu, Q.; Wang, Y.; Liu, J.; Yu,
Z.; Du, B.; Wu, Y.; Koshima, H.; Matsuura, T. Chem.
Commun. 1997, 693–694; (d) a more facile way for the
synthesis of NOBIN has been developed in our group
and will be reported soon. For the resolution of recemic
NOBIN, see: (a) Singer, R. A.; Shepard, M. S.; Carreira,
E. M. Tetrahedron 1998, 54, 7025–7032; (b) Ding, K.;
Wang, Y.; Yun, H.; Lin, J.; Wu, Y.; Terada, M.; Okubs,
Y.; Mikami, K. Chem. Eur. J. 1999, 5, 1734–1737.
7. Small impurity is the mono Schiff base product, which is
not removable via recrystallizations.
Acknowledgements
This work was supported by the National Institute of
Health. We thank Dr. A. Daniel Jones for his effort on
MS analysis.
1
8. Spectra data for 5: H NMR (CD2Cl2, 360 MHz) l 8.85
(d, 6.4 Hz, 2H), 7.94 (d, 8.1 Hz, 2H), 7.86 (d, 8.6 Hz,
4H), 7.77 (s, 2H), 7.73 (m, 1H), 7.48 (m, 8H), 7.38 (dt, 8.3
Hz, 1.2 Hz, 2H), 7.31 (dt, 6.8 Hz, 1.2 Hz, 2H), 7.21 (m,
6H), 7.19 (t, 6.5 Hz, 2H), 7.03 (t, 1H), 6.82 (m, 4H); 13C
NMR (CD2Cl2, 75 MHz) l 167.3, 162.32, 157.0, 151.7,
147.7, 136.9, 134.3, 133.6, 130.8, 130.6, 129.3, 129.2,
128.9, 128.4, 128.2, 128.1, 127.7, 127.6, 126.4, 125.7,
125.0, 124.7, 124.6, 124.5, 124.2, 122.9; MS (ESI) m/z 921
(M++1), 885 (M+−Cl), 849 (M+−2Cl). HRMS calcd for
RuC52N4H36O2Cl 885.1582, found: 885.1619.
References
1. For recent reviews, see: (a) Pfalz, A.; Lydone, K.; Mcker-
vey, M. A.; Charette, A. B.; Leel, H. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer, 1999; pp. 513–603; (b)
Doyle, M. P.; Protopopova, M. Tetrahedron 1998, 54,
7919–7946; (c) Doyle, M. P.; Forbes, D. C. Chem. Rev.
1998, 98, 911–935.
1
9. Spectra data for 6: H NMR (CD2Cl2, 360 MHz) l 8.39
(d, 8.6 Hz, 2H), 8.08 (d, 8.9 Hz, 2H), 8.00 (d, 8.1 Hz,
2H), 7.92 (m, 4H), 7.81 (d, 8.8 Hz, 2H), 7.53 (t, 7.0 Hz,
2H), 7.39 (m, 4H), 7.29 (t, 7.3 Hz, 2H), 7.19 (dd, 8.4 Hz,
12.4 Hz, 4H), 7.10 (d, 8.4 Hz, 2H), 6.97 (t, 7.9 Hz, 1H),
6.86 (d, 7.3 Hz, 2H), 6.39 (s, 2H), 3.98 (s, 1H), 3.37 (s,
3H); 13C NMR (CD2Cl2, 75 MHz) l 166.1, 164.1, 151.6,
148.7, 136.8, 134.4, 133.8, 130.9, 130.4, 129.6, 129.3,
128.9, 128.2, 127.8, 127.3, 126.8, 125.8, 125.6, 125.3,
124.9, 124.5, 123.5, 121.7, 51.2; MS (ESI) m/z 888 (M++
CH3CN−CH3OH−Cl), 847 (M+−CH3OH−Cl). HRMS
calcd for RuC49N4H34O2Cl 847.1424, found: 847.1380.
10. Formation of fumarate and maleate as the carbene
dimerization product is a general phenomenon in metal
catalyzed cyclopropanation of olefins with diazoacetate.
2. Chiral copper catalyts: (a) Aratani, T. Pure Appl. Chem.
1985, 57, 1839; (b) Fritschi, H.; Letenegger, U.; Pfaltz, A.
Angew. Chem., Int. Ed. Engl. 1986, 25, 1005–1006; (c)
Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Foul, M.
M. J. Am. Chem. Soc. 1991, 113, 726–728; (d) Lowenthal,
R. E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990,
31, 6005–6008. Chiral rhodium catalyst: (e) Doyle, M. P.;
Austin, R. E.; Bailey, A. S.; Dwyer, M. P.; Dyatkin, A.
B.; Kalinin, A. V.; Kwan, M. M. Y.; Liras, S.; Oalmann,
C. J.; Pieters, R. J.; Protopopora, M. N.; Raab, C. E.;
Roos, C. E.; Roos, G. H. P.; Zhou, Q.-L.; Martin, S. F.
J. Am. Chem. Soc. 1995, 117, 5763–5775; (f) Davies, H.
M. L.; Bruziniski, P. R.; Lake, D. H.; Kong, N.; Fall, M.
J. J. Am. Chem. Soc. 1996, 118, 6897.