A. Gautier et al.
Importantly, histidines, and some derivatives in stoichiometric quan-
tities, considerably accelerate the CuAAC reaction: b) K. Tanaka,
Beneficial effects of the imidazole moiety are also encountered in
copper aerobic oxidation of alcohols: c) I. E. Markꢈ, A. Gautier, R.
Dumeunier, K. Doda, F. Phillipart, S. M. Brown, C. J. Urch, Angew.
Chem. 2004, 116, 1614–1617; Angew. Chem. Int. Ed. 2004, 43, 1588–
1591; for bioinspired oxidation catalysts: d) L. Que, Jr., W. B.
remains unclear. Therefore, it is more likely that the phe-
nanthroline-containing complex 10 participates in the cata-
lytic cycle as an additional copper center (whatever the
nature of 11), which associates through a p coordination of
the acetylide in the rate-determining step.[3,16]
In conclusion, we report that simple addition of aromatic
amines increases CuAAC catalytic activity of [CuClACTHNUGRTNEUNG(SIMes)]
at a large range of temperatures in such a way that efficient
catalysis can safely take place in hydro-alcoholic solvents.
Phenanthroline and 4-DMAP are the additives of choice be-
cause the intrinsic stability of copper(I)–NHC may be main-
tained along the whole process, allowing a homogeneous
CuAAC to proceed without the intervention of a reducing
reagent. Current research in our laboratory focuses on the
screening of a larger collection of additives and on delineat-
ing their effects on the CuAAC reaction catalyzed by cop-
per(I)–NHC.
[8] A red precipitate forms rapidly using excess of NMI. A possible de-
composition path could involve oxidation by molecular oxygen.
Indeed, we have recently demonstrated that [CuClACTHUNRTGNEUNG(SIMes)] acts as a
Fenton reagent. See: M.-L Teyssot, A. S. Jarrousse, A. Chevry, A.
De Haze, C. Beaudoin, M. Manin, S. P. Nolan, S. Dꢀez-Gonzꢇlez, L.
[9] Blank experiment revealed that no trace of product was formed
without catalyst at 858C; only the 1–4 regioisomer was observed.
[10] Interestingly, 7 has been synthesized using [CuClACTHNUGRTENUNG(SIMes)] in solvent-
less conditions: A. Maisonial, P. Serafin, M. Traꢁkia, E. Debiton, V.
Thꢂry, D. J. Aitken, P. Lemoine, B. Viossat, A. Gautier, Eur. J.
protonation of nitrogen additives annihilates the catalytic activity.
[11] Crystal data for 10: C33H34ClCuN4, Mr =585.65, trigonal, space
3
¯
group R3, a=42.0084(19), c=9.3049(4) ꢆ, V=14220.5(1) ꢆ , Z=
Acknowledgements
ACTHNUTRGNEUNG
18, 1calcd =1.231 gcmꢀ3, m=0.80 mmꢀ1, T=293(2) K, R(F2>2s(F2))=
0.053, Rw (F2, all data)=0.209, S=1.10 for 3274 unique data (q<
20.88; Bruker APEX-II CCD diffractometer, Moka radiation, l=
0.71073 ꢆ) and 358 refined parameters; final difference synthesis
The authors thank Rachid Mahiou, Lionel Nauton, Oscar and Sara Mam-
moliti for helpful discussions.
D1max =0.54eꢆꢀ3
,
D1min =ꢀ0.63eꢆꢀ3
. CCDC-720889 contains the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Keywords: azides
· click chemistry · cycloaddition ·
homogeneous catalysis · N-heterocyclic carbenes
[12] Selected examples; a)
McMillin, W. R. Robinson, D. R. Powell, A. T. McKenzie, S. Chen,
Green, C. H. L. Kennard, G. Smith, B. D. James, A. H. White, Acta
(Phen)(PPh2CH2OH]: Q.-Y. Cao, W.-F. Fua, Z.-L Wang, Acta Crys-
tallogr. Sect. E 2004, 60, 987–989.
(PPh3)2]+ ion: J. R. Kirchhoff, D. R.
ACHUTGTNRNEUG[N CuPhenACHTUGNTRENNUGN
A
R
ACHTUNGTRENNUNG
[1] a) C. W. Tornøe, M. Meldal in Peptides: The Wave of the Future
(Eds.: M. Lebl, R. A. Houghten), Kluwer Academic, Dordrecht,
2001, pp. 263–264; b) H. C. Kolb, M. G. Finn, K. B. Sharpless
Angew. Chem. 2001, 113, 2056–2075; Angew. Chem. Int. Ed. 2001,
40, 2004–2021; c) C. W. Tornøe, C. Christensen, M. Meldal, J. Org.
Chem. 2002, 67, 3057–3064.
b) V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur. J. Org.
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
e) P. Job, Ann. Chim. 1928, 9, 113.
[14] Copper(I) and phenanthroline are well known to form 1:2 com-
plexes. For a recent determination of these constants, (log K1 =6
and log K2 =5.) see: S. V. Pakhomova, M. A. Proskurnin, V. V. Cher-
[3] a) V. O. Rodionov, S. I. Presolski, S. Gardinier, Y.-H. Lim, M. G.
S. I. Presolski, D. Daz Daz, V. V. Fokin, M. G. Finn, J. Am. Chem.
[15] a) L. A. Goj, E. D. Blue, C. Munro-Leighton, T. B. Gunnoe, J. L. Pe-
[16] a) In our experimental conditions, the charge transfer band remains
measurable during the reaction progress, attesting to the presence of
complex 10 in solution; b) for a discussion on the association modes
of acetylene and copper(I) see the excellent review from Meldal,
ref. [2a]. For alternative mechanistic considerations on click chemis-
try, see ref. [2a,b].
[4] a) N. Candelon, D. Lastꢂcouꢃres, A. Khadri Diallo, J. Ruiz Ara-
nzaes, D. Astruc, J.-M. Vincent, Chem. Commun. 2008, 741–743. b)
S. Dꢀez-Gonzꢇlez, S. P. Nolan, Aldrichimica Acta 2008, 41, 43–51.
[5] a) S. Dꢀez-Gonzꢇlez, A. Correa, L. Cavallo, S. P. Nolan, Chem. Eur.
J. 2006, 12, 7558–7564; b) S. Dꢀez-Gonzꢇlez, S. P. Nolan, Angew.
Chem. 2008, 120, 9013–9016; Angew. Chem. Int. Ed. 2008, 47, 8881–
8884; c) S. Dꢀez-Gonzꢇlez, E. D. Stevens, S. P. Nolan, Chem.
Commun. 2008, 4747–4749.
[6] W. G. Lewis, F. G. Magallon, V. V. Fokin, M. G. Finn, J. Am. Chem.
[7] Histidine is recognized to tune enzymeꢅs reactivity: a) E. I. Solomon,
Received: March 20, 2009
Published online: May 21, 2009
6326
ꢄ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2009, 15, 6322 – 6326