J. M. Carney et al. / Tetrahedron Letters 52 (2011) 352–355
355
and ene or Schenck reaction to provide an allylic hydroperoxide.29
References and notes
Work is in progress to determine which route(s) lead to products,
and if reaction conditions afford discrimination between them.
1. Moureau, C.; Dufraise, C.; Dean, P. M. Compt. Rend. 1926, 182, 1584–1587.
2. (a) Turro, N. J.; Ramaurthy, V.; Scaiano, J. C. Modern Molecular Photochemistry of
Organic Molecules; University Science Books: Sausalito, CA, 2010. pp 1001–
1042; (b) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry;
University Science Books: Sausalito, CA, 2006. pp 989–992; (c) DeRosa, M. C.;
Crutchley, R. J. Coord. Chem. Rev. 2002, 233–234, 351–371; (d) Wasserman, H.
H.; Ives, J. L. Tetrahedron 1981, 37, 1825–1852; (e) Sasaoka, M.; Hart, H. J. Org.
Chem. 1979, 44, 368–374.
3. Adam, W.; Bosio, S.; Bartoschek, A.; Griesbeck, A. G. Photooxygenation of 1,3-
Dienes. In CRC Handbook of Organic Photochemistry and Photobiology; Horspool,
W., Lenci, F., Eds., 2nd ed.; CRC Press: Boca Raton, FL, 2004; pp 25/1–25/19.
4. (a) Lancaster, J. R.; Marti, A. A.; López-Gejo, J.; Jockusch, S.; O’Conner, N.; Turro,
N. J. Org. Lett. 2008, 10, 5509–5512; (b) Aubry, J. M.; Pierlot, C.; Rigaudy, J.;
Schmidt, R. Acc. Chem. Res. 2003, 36, 668–675; (c) Martinez, G. R.; Ravanat, J. L.;
Medeiros, M. H. G.; Cadet, J.; Di Mascio, P. J. Am. Chem. Soc. 2000, 122, 10212–
10213; (d) Rickborn, B. Org. React. 1998, 53, 223–629; (e) Saito, I.; Nagata, R.;
Matsuura, T. J. Am. Chem. Soc. 1985, 107, 6329–6334.
O
O
Ph
Ph
Ph
Et
Ph
O
Et
Ph
Ph
9
10
3. Conclusion
Commercial narrow viewing angle 5 mm milliwatt light emit-
ting diodes are effective, energy-efficient sources for photooxida-
tion. Generating little waste heat, they are particularly useful in
the preparation of thermally labile arene endoperoxides. Demon-
strated to be scalable in the micro- to millimolar range using an ar-
ray of three LED’s, larger arrays may provide access to larger scale
reactions or rate enhancements of slow reactions.
5. See: (a) Turro, N. J.; Chow, M. F.; Rigaudy, J. J. Am. Chem. Soc. 1981, 103, 7218–
7224; and (b) Turro, N. J.; Chow, M. F. J. Am. Chem. Soc. 1980, 102, 1190–1192.
for demonstration of
endoperoxides.
a
17O isotope effect on the thermolyses of arene
6. e.g.: Donkers, R. L.; Workentin, M. S. J. Am. Chem. Soc. 2004, 126, 1688–1698.
7. Eisenthal, K. B.; Turro, N. J.; DuPuy, C. G.; Hrovat, D. A.; Jenny, T. A. J. Phys. Chem.
1986, 90, 5168–5173.
8. (a) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126, 1599–1606;
(b) Duerr, B. F.; Chung, Y. S.; Czarnik, A. W. J. Org. Chem. 1988, 53, 2120–2122.
9. Tuite, E. M.; Kelly, J. M. J. Photochem. Photobiol., B 1993, 21, 103–124.
10. Tanielian, C.; Wolff, C. J. Phys. Chem. 1995, 99, 9825–9830.
11. Lamberts, J. J. M.; Schumacher, D. R.; Neckers, D. C. J. Am. Chem. Soc. 1984, 106,
5879–5883.
4. Representative experimental procedure
4.1. 9,10-Dimethylanthracene 9,10-endoperoxide (2a) using
methylene blue as sensitizer
12. Guarini, A.; Tundo, P. J. Org. Chem. 1987, 52, 3501–3508.
13. Ciana, C. L.; Bochet, C. G. Chimia 2007, 61, 650–654.
14. (a) Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue,
B. W.; Hasan, T. Chem. Rev. 2010, 110, 2795–2838; (b) Hashimoto, M. C. E.;
Toffoli, D. J.; Prates, R. A.; Courrol, L. C.; Ribeiro, M. S. Proc. SPIE 2009, 7380.
73803F-1–73803F-7; (c) Konopka, K.; Goslinski, T. J. Dent. Res. 2007, 86, 694–
707; (d) Pervais, S.; Olivio, M. Clin. Exp. Pharmacol. Physiol. 2006, 33, 551–556;
(e) Schmidt, M. H.; Meyer, G. A.; Reichert, K. W.; Cheng, J.; Krouwer, H. G.;
Ozker, K.; Whelan, H. T. J. Neurooncol. 2004, 67, 201–207; (f) Kamano, H.;
Okamoto, K.; Sakata, I.; Kubota, Y.; Tanaka, T. Transpl. Proc. 2000, 32, 2442–
2443; (g) Schmidt, M. H.; Bajic, D. M.; Reichert, K. W.; Martin, T. S.; Meyer, G.
A.; Whelan, H. T. Neurosurgery 1996, 38, 552–557.
15. (a) Erbas, S.; Gorgulu, A.; Kocakusakogullari, M.; Akkaya, E. U. Chem. Commun.
2009, 4956–4958; (b) Li, W. T.; Tsao, H. W.; Chen, Y. Y.; Cheng, S. W.; Hsu, Y. C.
Photochem. Photobiol. Sci. 2007, 6, 1341–1348; (c) Juzeniene, A.; Juzenas, P.; Ma,
L. W.; Iani, V.; Moan, J. Lasers Med. Sci. 2004, 19, 139–149; (d) Brown, S. B. J.
Dermatol. Treat. 2003, 14, 11–14.
9,10-Dimethylanthracene (1a, 10.3 mg, 49.9
in an aluminum foil-wrapped, magnetic stirring bar-equipped
10 mL hypovial. The vial was charged with 5 mL of a 27 M solu-
lmol) was sealed
l
tion of methylene blue in dichloromethane. After two À78 °C
freeze-aspirator pump-1 atm N2 purge-23 °C thaw cycles, 12 mL
(ca. 0.5 mmol, 10 equiv) of O2 was injected into the vial using a
gas-tight syringe. The foil was removed, the contents of the reac-
tion vial stirred rapidly at 3 °C in a cold room as the vial was irra-
diated with three 125 mW, 627 nm LED’s. After 23 min, the vial
was vented by inserting a syringe needle through the septum.
The septum was removed and the contents of the vial filtered
through a Pasteur pipette containing a 2 cm plug of neutral chro-
matographic alumina into a tared, 25 mL round bottomed flask.
The alumina plug was washed five times with 1 mL aliquots of
dichloromethane and the washings combined with the filtrate.
Concentration by rotary evaporation afforded 11.8 mg (99%) of
9,10-dimethylanthracene 9,10-endoperoxide (2a) which contained
no 9,10-dimethylanthracene (1a, Rf = 0.63) when analyzed by TLC
(petroleum ether). 1H NMR (CDCl3) d 7.44 (m, 4H), 7.31 (m, 4H),
2.19 (s, 6H) ppm. 13C NMR (CDCl3) d 141.11, 127.64, 120.91,
79.84, 13.95 ppm. IR 3041 (w), 2983 (w), 2935 (w), 1463 (m),
1378 (m), 756 (s) cmÀ1. MS (MALDI) m/z 239.12 (M+H+).
16. Yin, S.; Liu, B.; Zhang, P.; Morikawa, T.; Yamanaka, K.; Sato, T. J. Phys. Chem. C
2008, 112, 12425–12431.
17. Ricketts, S. R.; Douglas, P. Sensors Actuators B 2008, 135, 46–51.
18. (a) Bourne, R. A.; Han, X.; Poliakoff, M.; George, M. W. Angew. Chem., Int. Ed.
2009, 48, 5322–5325; (b) Bonacin, J. A.; Engelmann, F. M.; Severino, D.; Toma,
H. E.; Baptista, M. S. J. Braz. Chem. Soc. 2009, 20, 31–36; (c) Carofiglio, T.;
Donnola, P.; Maggini, M.; Rossetto, M.; Rossi, E. Adv. Synth. Catal. 2008, 350,
2815–2822; (d) Lapkin, A. A.; Boddu, V. M.; Aliev, G. N.; Goller, B.; Polisski, S.;
Kovalev, D. Chem. Eng. J. 2008, 136, 321–336; (e) Meyer, S.; Tietze, D.; Rau, S.;
Schäfer, B.; Kreisel, G. J. Photochem. Photobiol. A 2007, 186, 248–253; (f) Kreisel,
G.; Meyer, S.; Tietze, D.; Fidler, T.; Gorges, R.; Kirsch, A.; Schäfer, B.; Rau, S.
Chem. Ingenieur Tech. 2007, 79, 153–159; (g) Chen, D. H.; Ye, X.; Li, K. Chem. Eng.
Technol. 2005, 28, 95–97.
19. (a) Schmidt, R.; Schaffner, K.; Trost, W.; Brauer, H. D. J. Phys. Chem. 1984, 88,
956–958; (b) Motoyoshiya, J.; Masunaga, T.; Harumoto, D.; Ishiguro, S.; Narita,
S.; Hayashi, S. Bull. Chem. Soc. Jpn. 1993, 66, 1166–1171; (c) Wu, K. C.; Trozzolo,
A. M. J. Phys. Chem. 1979, 83, 3180–3183.
20. (a) Jary, W. G.; Ganglberger, T.; Pöchlauer, P.; Falk, H. Monatsh. Chem. 2005, 136,
537–541; (b) Aksnes, G.; Vagstad, B. H. Acta Chem. Scand. B 1979, 33, 47–51.
21. (a) Salker, A. V.; Gokakakar, S. D. Int. J. Phys. Sci. 2009, 4, 377–384; (b) Dalton, J.;
Milgrom, L. R.; Pemberton, S. M. J. Chem. Soc., Perkin Trans. 2 1980, 370–372; (c)
Meot-Ner, M.; Adler, A. D. J. Am. Chem. Soc. 1975, 97, 5107–5111.
22. Bikales, N. M.; Becker, E. I. J. Org. Chem. 1956, 21, 1405–1407.
23. (a) Catir, M.; Kilic, H.; Nardello-Rataj, V.; Aubry, J. M.; Kazaz, C. J. Org. Chem.
2009, 74, 4560–4564; (b) Fuchter, M. J.; Hoffman, B. M.; Barrett, A. G. M. J. Org.
Chem. 2006, 71, 724–729. and references cited therein; (c) Pierlot, C.; Nardello,
V.; Schrive, J.; Mabille, C.; Barbillat, J.; Sombret, B.; Aubry, J. M. J. Org. Chem.
2002, 67, 2418–2423.
Acknowledgments
The authors gratefully acknowledge funding from the Creighton
University Department of Pathology and the Creighton University
Graduate School for a Summer Faculty Research Fellowship. James
T. Fletcher, Robert C. Allen, and Ahsan U. Khan are thanked for use-
ful insights.
24. Yang, J. S.; Huang, H. H.; Lin, S. H. J. Org. Chem. 2009, 74, 3974–3977.
25. Rosenfeld, S. M. J. Chem. Educ. 1986, 63, 184–185.
Supplementary data
26. Wasserman, H. H.; Scheffer, J. R.; Cooper, J. L. J. Am. Chem. Soc. 1972, 94, 4991–
4996.
27. Wasserman, H. H.; Wiberg, K. B.; Larsen, D. L.; Parr, J. J. Org. Chem. 2005, 70,
105–109.
28. Allen, C. F. H.; VanAllan, J. A. J. Am. Chem. Soc. 1950, 72, 5165–5167.
29. Prein, M.; Adam, W. Angew. Chem., Int. Ed. 1996, 35, 477–494.
General experimental conditions and apparatus, detailed exper-
imental procedures and spectroscopic data for all compounds pre-
pared. Supplementary data associated with this article can be