Page 9 of 11
Pl eNa es we dJ oo u nr no at l ao df jCu hs et mm i as tr rgy ins
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
9, 4456–4458; J.C. Russell, M.O. Blunt, J.MD.OGI:a1r0f.i1t0t,39D/.DJ.0NScJu0r0r1,10MD.
Alexander, N.R. Champness and P.H. Beton, J. Am. Chem. Soc. 2011,
Conclusions
We designed and synthesised new molecular architectures based on
the 3D Janus tecton concept that can be suitable for surface self-
assembly by supramolecular interactions such as ionic, coordination, Wang, Y. Li, M. Wang, S. Lu, X-Q. Hao, X. Li, B. Xu and X. Li, Nat.
halogen or hydrogen bonding. These non-covalent interactions were
studied by pH-dependent absorption and emission measurements,
and by infra-red spectrometry which proved that both ionic and
coordination bonding are compatible with the molecules’ design.
Finally, the supramolecular self-assembly of the pedestal P was
studied on HOPG at the liquid/solid interface. The arrangement of
1
33, 4220–4223.
8
B. Song, S. Kandapal, J. Gu, K. Zhang, A. Reese, Y. Ying, L. Wang, H.
Comm. 2018, 9, 4575 ; N. Lin, A. Langner, S.L. Tait, C. Rajadurai, M.
Ruben and K. Kern, Chem. Commun. 2007, 1, 4860-4862; M.A.
Lingenfelder, H. Spillmann, A. Dmitriev, S. Stepanow, N. Lin, J.V. Barth
and K. Kern, Chem. - A Eur. J. 2004, 10, 1913–1919; S. Stepanow, M.
Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng,
C. Cai, J.V. Barth and K. Kern, Nat. Mater. 2004, 3, 229–233.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
9
L. Sosa-Vargas, E. Kim and A-J. Attias, Mater. Horiz., 2017, 4, 570; K.
the molecules on HOPG show a quasi-square lattice formed by Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha and J.P. Hill, Sci.
Tech. Adv. Mater. 2019, 20:1, 51-95.
hydrogen bonding between the pyridine unit and the methyl groups
on the p-xylene core. The quasi-square lattice indicates strong
intermolecular interactions are present between the P molecules
leading to a supramolecular self-assembly which is independent of
the underlying HOPG structure. As perspectives, such different
10
Z.C. Dong, X.L. Zhang, H.Y. Gao, Y. Luo, C. Zhang, L.G. Chen, R.
Zhang, X. Tao, Y. Zhang, J.L. Yang and J.G. Hou, Nat. Photonics 2010,
, 50–54.
X.H. Qiu, Science 2003, 299, 542–546; J. Repp, G. Meyer, S.M.
Stojković, A. Gourdon and C. Joachim, Phys. Rev. Lett. 2005, 94,
4
11
interactions being able to favour or modify the supramolecular self- 26803.
12
assembly of P (respectively C, JT) at the liquid/solid interface,
additional experiments will be performed in a near future to study
their different supramolecular self-assemblies with other substrates.
J.A. Mann, J. Rodríguez-López, H.D. Abruña and W.R. Dichtel, J.
Am. Chem. Soc. 2011, 133, 17614–17617.
P. Du, M. Jaouen, A. Bocheux, C. Bourgogne, Z. Han, V. Bouchiat, D.
13
Kreher, F. Mathevet, C. Fiorini-Debuisschert, F. Charra and A-J. Attias,
Angew. Chemie Int. Ed. 2014, 5, 10060–10066.
Conflicts of interest
There are no conflicts to declare.
14
S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A-J. Attias, C. Fiorini-
Debuisschert, L. Douillard and F. Charra, ACS Photonics 2016, 3,
2
291–2296.
1
5
X. K. Li, S. Q. Zhang, J. Q. Li, Y. X. Qian, W. B. Duan and Q. D. Zeng,
Acknowledgements
This research was supported by a PhD grant overseen by the
French government (Ministry of Education and Research).
r
New Journal of Chemistry, 2019, 43, 13315-13325
16
S. Takahashi, Y. Kuroyama, K. Sonogashira and N. Hagihara,
Synthesis (Stuttg). 1980, 627–630.
L. A. Carpino and A.C. Sau, J. Chem. Soc., Chem. Commun. 1979, 11,
514–515.
K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett. 1975,
6, 4467–4470.
17
Notes and references
18
1
J.V. Barth, G. Costantini and K. Kern, Nature 2005, 437, 671–679.
S. De Feyter and F.C. De Schryver. J. Phys. Chem. B, 2005, 109, 4290–
1
2
19
C. Djerassi, Chem. Rev. 1948, 43, 271–317.
4
302.
20
H.R. Hudson, R.R.F. Kinghorn and W.S. Murphy, J. Chem. Soc. C.
971, 3593-3596.
G.W. Stacy, A.J. Papa, F.W. Villaescusa and S.C. Ray, J. Org. Chem.
964, 29 (3), 607–612.
I.S. Perelygin and M.A. Klimchuk, J. Appl. Spectrosc. 1976, 24 (1),
3–46.
D. Bleger, D. Kreher, F. Mathevet, A. J. Attias, I. Arfaoui, G. Metge,
L. Douillard, C. Fiorini-Debuisschert and F. Charra, Angewandte
Chemie-International Edition, 2008, 47, 8412-8415.
N. Katsonis, E. Lacaze and B. L. Feringa, Journal of Materials
Chemistry, 2008, 18, 2065-2073.
N. Kalashnyk, M. Jaouen, C. Fiorini-Debuisschert, L. Douillard, A. J.
Attias and F. Charra, Chemical Communications, 2018, 54, 9607-9610.
M. A. Dubois, O. Guillermet, S. Gauthier, G. Zhan, Y. Makoudi, F.
Palmino, X. Bouju and A. Rochefort, Physical Chemistry Chemical
Physics, 2018, 20, 15350-15357.
D. Hotger, P. Carro, R. Gutzler, B. Wurster, R. Chandrasekar, S.
Klyatskaya, M. Ruben, R. C. Salvarezza, K. Kern and D. Grumelli,
Physical Chemistry Chemical Physics, 2018, 20, 15960-15969.
M. El Garah, A. Ciesielski, N. Marets, V. Bulach, M. W. Hosseini and
P. Samori, Chemical Communications, 2014, 50, 12250-12253.
A. Mukherjee, J. Teyssandier, G. Hennrich, S. De Feyter and K. S.
Mali, Chemical Science, 2017, 8, 3759-3769.
3
D.P. Goronzy, M. Ebrahimi, F. Rosei,A.Y. Fang, S. De Feyter, S.L. Tait,
1
C. Wang, P.H. Beton, A.T.S. Wee, P.S. Weiss and D.F. Perepichka, ACS
Nano 2018, 12, 7445−7481.
21
1
4
S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan and C.L. Bai, Surf. Sci. 2003,
22
538, L451–L459; D. Bléger, D. Kreher, F. Mathevet, A-J. Attias, G.
4
Schull, A. Huard, L. Douillard, C. Fiorini-Debuischert and F. Charra,
Angew. Chemie - Int. Ed. 2007, 46, 7404–7407; G. Schull, L. Douillard,
C. Fiorini-Debuisschert, F. Charra, F. Mathevet, D. Kreher and A-J.
Attias, J. Nano Lett. 2006, 6, 1360–1363.
23
24
5
M.E. Stawasz, D.L. Sampson and B.A. Parkinson, Langmuir 2000, 16,
2
326–2342.
25
6
G. Velpula, M. Li, Y. Hu, Y. Zagranyarski, W. Pisula, K. Muellen, K.S.
Mali and S. De Feyter, Chem. Eur. J. 2018, 24, 12071 – 12077 ; O.D.
Arado, M. Luft, H. Mönig, P.A. Held, A.; Studer, S. Amirjalayer and H.
Fuchs, Phys. Chem. Chem. Phys. 2016, 18, 27390–27395; S.
Stepanow, T. Strunskus, M. Lingenfelder, A. Dmitriev, H. Spillmann,
N. Lin, J.V. Barth, C. Wöll and K. Kern, J. Phys. Chem. B 2004, 108,
26
27
1
9392–19397; M. Ruiz-Osés, T. Kampen, N. González-Lakunza, I.
Silanes, P.M. Schmidt-Weber, A. Gourdon, A. Arnau, K. Horn and J.E.
28
Ortega, ChemPhysChem 2007, 8, 1722–1726.
7
K-H. Chung, J. Park, K.Y. Kim, J.K. Yoon, H. Kim, S. Han and S.J. Kahng,
29
Chem. Commun. 2011, 47, 11492-11494; R. Gutzler, H. Walch, G.
Eder, S. Kloft, W.M. Heckl and M. Lackinger, Chem. Commun. 2009,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins