the consumption of the carbonyl group and formation of the
OH group. After the reaction, THF was evaporated, and then
10 ml hexane was added into the glass bottle to extract alcohol
product three times. Then, clear hexane solution was collected
after centrifugation. Next, hexane was evaporated and a
transparent liquid residue was left. In the end, further column
chromatography (silica gel, 200–300 mesh, elution by using
ethyl acetate : hexane = 1 : 10 solution) was utilized to purify
4-Methoxylphenylmethanol (entry 3, Table 1). 1H NMR
(500 MHz, CDCl3, 25 1C; TMS): d = 2.2 (s, 1H; O–H), 3.8
(s, 3H; CH3), 4.6 (s, 2H; CH2), 6.8–6.9 (m, 2H; ArH), 7.2–7.3
ppm (m, 2H; ArH); 13C NMR (126 MHz, CDCl3, 25 1C;
CDCl3): d = 55.3, 64.9, 113.9, 128.6, 133.2, 159.2 ppm; FT-IR
(film): nmax = 3354, 3032, 3001, 2935, 2836, 1612, 1514, 1247,
1033, 816 cmÀ1; MS (EI): m/z (%) 138 [M]+ (100), 109 (73),
121 (52), 77 (50), 94 (33).
1
the alcohol product. Alcohol was characterized by H NMR,
13C NMR, FT-IR and MS.
4-Chlorophenylmethanol (entry 4, Table 1). 1H NMR
(500 MHz, CDCl3, 25 1C; TMS): d = 2.1 (s, 1H; O–H), 4.6
(s, 2H; CH2), 7.2–7.3 ppm (m, 4H; ArH); 13C NMR
(126 MHz, CDCl3, 25 1C; CHCl3): d = 64.5, 128.3, 128.7,
133.3, 139.3 ppm; FT-IR (film): nmax = 3342, 2953, 2920,
2855, 2731, 1597, 1491, 1450, 1405, 1086, 1012, 708 cmÀ1; MS
(EI): m/z (%) 142 [M]+ (60), 77 (100), 107 (68), 113 (18).
General experimental procedure for reducing aldehydes with
LiNH2BH3
5 ml of 0.2 M LiNH2BH3 THF solution was added into 1 ml of
1 M aldehyde solution in THF in a closed glass bottle at room
temperature. An FT-IR spectrometer was employed to monitor
the consumption of the carbonyl group. The formation of a
white precipitate was observed during the reaction. After the
reaction, THF was evaporated, and then 5 ml of 2 M HCl
aqueous solution was added into the glass bottle. The system was
stirred at room temperature for 30 min. Next, the solution was
extracted with 10 ml diethyl ether three times. The combined
diethyl ether extracts were washed with brine, dried with NaSO4
overnight and concentrated in vacuum. In the final step, the
residue was purified by silica gel flash chromatography to obtain
the desired product. The product was characterized by FT-IR,
1H NMR, 13C NMR and GC-MS.
4-Nitrophenylmethanol (entry 5, Table 1). 1H NMR
(500 MHz, CDCl3, 25 1C; TMS): d = 2.2 (s, 1H; O–H), 4.8
3
(s, 2H; CH2), 7.5 (d, JHH = 8.86 Hz, 2H; ArH), 8.2 ppm
(d, 3JHH = 8.76 Hz, 2H; ArH); 13C NMR (126 MHz, CDCl3,
25 1C; CDCl3): d = 64.0, 123.7, 127.0, 147.3, 148.3 ppm;
FT-IR (film): nmax = 3521, 3112, 2924, 2884, 1602, 1511, 1344,
1196, 1057, 736 cmÀ1; MS (EI): m/z (%) 153 [M]+ (34), 77
(100), 107 (50), 89 (41), 51 (28), 136 (22).
Methyl 4-(hydroxymethyl)benzoate (entry 6, Table 1).
1H NMR (500 MHz, CDCl3, 25 1C; TMS): d = 2.1 (s, 1H;
O–H), 3.9 (s, 3H; CH3), 4.7 (s, 2H; CH2), 7.4–7.5 (m, 2H;
ArH), 8.0–8.1 ppm (m, 2H; ArH); 13C NMR (126 MHz,
CDCl3, 25 1C; CDCl3): d = 52.0, 64.6, 126.4, 129.3, 129.8,
145.9, 166.9 ppm; FT-IR (film): nmax = 3384, 3032, 3001,
2935, 2836, 1710, 1612, 816 cmÀ1; MS (EI): m/z (%) 166 [M]+
(40), 77 (100), 107 (60), 136 (30).
Product characterization
a-Deuterobenzenemethanol. 1H NMR (500 MHz, CDCl3,
3
25 1C; TMS): d = 2.2 (s, 1H; O–H), 4.6 (d, JHH = 9.90 Hz,
2H; CH2), 7.3–7.4 ppm (m, 5H; ArH); 13C NMR (126 MHz,
CDCl3, 25 1C; CDCl3): d = 64.9 (t, JCD = 21.84 Hz), 127.0,
127.6, 128.5, 140.8 ppm; FT-IR (film): nmax = 3338, 3087,
3064, 3030, 2915, 2135, 1496, 1453, 1208, 1201, 734, 697 cmÀ1
MS (EI): m/z (%) 109 [M]+ (80), 79 (100), 92 (20).
;
Notes and references
1 (a) A. Staubitz, A. P. M. Robertson and I. Manners, Chem. Rev.,
2010, 110, 4079–4124; (b) F. H. Stephens, V. Pons and R. T. Baker,
Dalton Trans., 2007, 2613–2626.
Lithium aminotribenzylborate (a, Scheme 3). 1H NMR
(500 MHz, DMSO-d6, 25 1C; TMS): d = 3.3 (s, 2H; N–H),
4.4–4.5 (m, 6H; CH2), 7.1–7.3 ppm (m, 15H; ArH); 13C NMR
(126 MHz, DMSO-d6, 25 1C; DMSO-d6): d = 63.4, 125.7,
126.8, 127.8, 128.4 ppm.
2 (a) A. Gutowska, L. Y. Li, Y. S. Shin, C. M. M. Wang, X. H. S. Li,
J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw,
M. Gutowski and T. Autrey, Angew. Chem., Int. Ed., 2005, 44,
3578–3582; (b) D. W. Himmelberger, L. R. Alden, M. E. Bluhm
and L. G. Sneddon, Inorg. Chem., 2009, 48, 9883–9889; (c) T. He,
Z. T. Xiong, G. T. Wu, H. L. Chu, C. Z. Wu, T. Zhang and
P. Chen, Chem. Mater., 2009, 21, 2315–2318; (d) Q. Xu and
M. Chandra, J. Power Sources, 2006, 163, 364–370;
(e) M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari and
L. G. Sneddon, J. Am. Chem. Soc., 2006, 128, 7748–7749;
(f) R. J. Keaton, J. M. Blacquiere and R. T. Baker, J. Am. Chem.
Soc., 2007, 129, 1844; (g) U. B. Demirci and P. Miele, J. Power
Sources, 2010, 195, 4030–4035.
3 (a) Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw,
A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson,
P. P. Edwards and W. I. F. David, Nat. Mater., 2008, 7,
138–141; (b) Z. T. Xiong, Y. S. Chua, G. T. Wu, W. L. Xu,
P. Chen, W. Shaw, A. Karkamkar, J. Linehan, T. Smurthwaite and
T. Autrey, Chem. Commun., 2008, 5595–5597; (c) C. Z. Wu,
G. T. Wu, Z. T. Xiong, W. I. F. David, K. R. Ryan,
M. O. Jones, P. P. Edwards, H. L. Chu and P. Chen, Inorg. Chem.,
2010, 49, 4319–4323; (d) H. Wu, W. Zhou and T. Yildirim, J. Am.
Chem. Soc., 2008, 130, 14834–14839; (e) D. Kim, N. Singh, H. Lee
and K. Kim, Chem.–Eur. J., 2009, 15, 5598–5604.
Phenylmethanol (entry 1, Table 1). 1H NMR (500 MHz,
CDCl3, 25 1C; TMS): d = 2.8 (s, 1H; O–H), 4.6 (s, 2H; CH2),
7.3–7.4 ppm (m, 5H; ArH); 13C NMR (126 MHz, CDCl3,
25 1C; CDCl3): d = 65.0, 126.9, 127.4, 128.4, 140.8 ppm;
FT-IR (film): nmax = 3335 (O–H), 3087, 3064, 3030, 2931,
2873, 1496, 1453, 1208, 1201, 734, 697 cmÀ1; MS (EI): m/z (%)
108 [M]+ (94), 79 (100), 51 (19), 91 (16).
4-Methylphenylmethanol (entry 2, Table 1). 1H NMR
(500 MHz, CDCl3, 25 1C; TMS): d = 1.9 (s, 1H; O–H), 2.4
(s, 3H; CH3), 4.6 (s, 2H; CH2), 7.2 (d, JHH = 7.89 Hz, 2H;
3
3
ArH), 7.3 ppm (d, JHH = 8.08 Hz, 2H; ArH); 13C NMR
(126 MHz, CDCl3, 25 1C; CDCl3): d = 21.2, 65.2, 127.1,
129.2, 137.7, 137.4 ppm; FT-IR (film): nmax = 3334, 3048,
3021, 2950, 2919, 1518, 1445, 1032, and 802 cmÀ1; MS (EI):
m/z (%) 122 [M]+ (92), 107 (100), 91 (69), 79 (65).
4 (a) G. C. Andrews, Tetrahedron Lett., 1980, 21, 697–700;
(b) G. C. Andrews and T. C. Crawford, Tetrahedron Lett., 1980,
c
1500 New J. Chem., 2012, 36, 1496–1501
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012