4. Conclusions
References
1 R. B. Meyer, L. Liebert, L. Strzelecki and P. Keller, J. Phys. Lett.,
1975, 36, L69.
2 T. Niori, T. Sekine, J. Watanabe, T. Furukawa and H. Takezoe, J.
Mater. Chem, 1996, 6, 1231.
3 D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark,
Four V-shaped molecules containing an acute-angled central
core (Ar ¼ 1,2-Phen or 2,3-Naph) and a lateral halogen
substituent (X ¼ F or Cl) have been synthesized. Their meso-
morphic properties were investigated by DSC, polarizing
microscopy, X-ray and electro-optical measurements. All
compounds were enantiotropically liquid crystalline. In general,
compounds showed homeotropic optical textures using a
normal slide glass without surface treatment. In contrast, using
a planar alignment cell, compounds with Ar/X ¼ 1,2-Phen/F,
1,2-Phen/Cl, and 2,3-Naph/F showed optical textures with
incomplete unidirectional alignment. According to our experi-
mental data, we have concluded that compounds with Ar/X ¼
1,2-Phen/F, 1,2-Phen/Cl, and 2,3-Naph/F formed the locally
polar smectic A phase, SmAPR. But compound with Ar/X ¼
2,3-Naph/Cl formed the conventional smectic A phase. From
the structural point of view, the smectic A phase in these
compounds can be compared with the smectic C phase18 in the
polymer analogues. This different mesomorphism may be
attributed to competition between mesogenic unit’s tendency
toward molecular ordering and main chain’s tendency toward
stable conformation, which is much greater in the melt state of
the polymer than that of the compound. Meanwhile it is not
clear why 4d formed the conventional A phase while the other
compounds formed the polar smectic A phase. Perhaps the
lateral chlorine substitution is less effective to the dipolar
orientation than the lateral fluorine substituent. Further study is
needed to fully understand this subject.
€
E. Korblova and D. M. Walba, Science, 1997, 278, 1924.
4 H. R. Brand, P. E. Cladis and H. Pleiner, Macromolecules, 1992, 25,
7223.
5 B. K. Sadashiva, R. A. Reddy, R. Pratibha and N. V. Madhusudana,
J. Mater. Chem., 2002, 12, 943.
6 H. N. S. Murthy and B. K. Sadashiva, Liq. Cryst., 2004, 31, 567.
7 S. T. Wang, S. F. Han, A. Cady, Z. Q. Liu, A. Kamenev, L. Glazman,
B. K. Sadashiva, R. A. Reddy and C. C. Huang, Phys. Rev., 2004, 70,
061705.
8 R. A. Reddy and B. K. Sadashiva, J. Mater. Chem., 2004, 14, 310.
ꢁ
9 (a) A. Eremin, S. Diele, G. Pelzl, H. Nadasi, W. Weissfiog,
J. Salfetnikova and H. Kresse, Phys. Rev., 2001, 64, 051707; (b)
€
M. W. Schroder, S. Diele, N. Pancenko, W. Weissflog and G. Pelzl,
J. Mater. Chem., 2002, 12, 1331.
10 (a) C. Keith, M. Prehm, Y. P. Panarin, J. K. Vij and C. Tschierske,
Chem. Commun., 2010, 46, 3702; (b) Y. P. Panarin, M. Nagaraj,
J. K. Vij, C. Keith and C. Tschierske, EPL, 2010, 92, 26002; (c)
M. Nagaraj, Y. P. Panarin, J. K. Vij, C. Keith and C. Tschierske,
Appl. Phys. Lett., 2010, 97, 213505.
ꢂ
ꢂ
11 D. Pociecha, M. Cepic, E. Gorecka and J. Mieczkowski, Phys. Rev.,
2003, 91, 185501.
12 Y. Shimbo, Y. Takanishi, K. Ishikawa, E. Gorecka, D. Pociecha,
J. Mieczkowski, K. Gomola and H. Takezoe, Jpn. J. Appl. Phys.,
2006, 45, 282.
13 M. Kuboshita, Y. Matsunaga and H. Matsuzaki, Mol. Cryst. Liq.
Cryst., 1991, 199, 319.
14 H. Matsuzaki and Y. Matsunaga, Liq. Cryst., 1993, 14, 105.
15 V. Prasad, Liq. Cryst., 2001, 28, 145.
16 C. V. Yelamaggad, I. Shashikala, D. S. Rao and S. K. Prasad, Liq.
Cryst., 2004, 31, 1027.
17 S. K. Lee, Y. Naito, L. Shi, M. Tokita, H. Takezoe and J. Watanabe,
Liq. Cryst., 2007, 34, 935.
18 E-J. Choi, E.-C. Kim, C.-W. Ohk, W.-C. Zin, J.-H. Lee and
T.-K. Lim, Macromolecules, 2010, 43, 2865.
Acknowledgements
19 E-J. Choi, X. Cui, C.-W. Ohk, W.-C. Zin, J.-H. Lee, T.-K. Lim and
W.-G. Jang, J. Mater. Chem., 2010, 20, 3743.
20 E-J. Choi, X. Cui, W.-C. Zin, C.-W. Ohk, T.-K. Lim and J.-H. Lee,
ChemPhysChem, 2007, 8, 1919.
This work was supported by the National Research Foundation
of Korea (KOSEF) grant funded by Korea government (MEST)
(no. R01-2008-000-11521-0). This work was supported in part by
KRCF (Korea Research Council of Fundamental Science &
Technology) and KIST (Korea Institute of Science and Tech-
nology) for NAP (National Agenda Project) program, and sup-
ported in part by KIST internal project.
ꢁ
21 K. Fodor-Csorba, A. Vajda, G. Galli, A. Jakli, D. Demus, S. Holly
ꢁ
and E. Gacs-Baiz, Macromol. Chem. Phys., 2002, 203, 1556.
22 W. Weissflog, Ch. Lischka, S. Diele, G. Pelzl, I. Wirth, S. Grande,
H. Kresse, H. Schmalfuss, H. Hartung and A. Stettler, Mol. Cryst.
Liq. Cryst., 1999, 333, 203.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 24930–24935 | 24935