Journal of the American Chemical Society
Page 4 of 5
Acta 1996, 79, 51-60. (c) Zampella, A.; D’Auria, M. V.; Minale, L.; Debitus, C.;
Roussakis, C. J. Am. Chem. Soc. 1996, 118, 11085-11088.
(7) (a) Schreiber, S. L. J. Am. Chem. Soc. 1980, 102, 6163-6165. See also: (b)
Becker, J.; Ohloff, G. Helv. Chim. Acta 1971, 54, 2889-2895.
tant Saccharomyces cerevisiae lacking the PDR5 drug transporter. In
liquid culture, 1 also potently inhibits growth of a yeast ERG3 mutant.
This suggests there is a yeast receptor(s) for the compound and opens
the possibility of using genome wide mutagenesis to identify it. Exper-
iments to test this exciting prospect are ongoing as are attempts to
adapt the synthesis to preparations of biochemical probes and related
bioactive natural products.
1
2
3
4
5
6
7
8
(8) (a) Koseki, K.; Ebata, T.; Kawakami, H.; Matsushita, H.; Itoh, K.; Naoi, Y.
Method of preparing (S)-γ-hydroxymethyl-α, β-butenolide. US 4994585 A,
February 19, 1991. (b) Cao, F.; Schwartz, T. J.; McClelland, D. J.; Krishna, S.
H.; Dumesic, J. A.; Huber, G. W. Energy Environ. Sci. 2015, 8, 1808-1815.
(9) Li, C.-J.; Chan, T.-H. Organometallics 1991, 10, 2548-2549.
(10) A small amount (ca. 5%) of the iodo variant of 10 is produced during this
reaction. Because the iodide interferes with subsequent iridium catalysis (see
ref. 13), it was converted to 10 during work-up via Finkelstein exchange (LiCl,
acetone, rt).
(11) Taneja, S. C.; Sethi, V. K.; Andotra, S. S.; Koul, S.; Qazi, G. N. Synth.
Commun. 2005, 35, 2297-2303.
(12) (a) Hassan, A.; Townsend, I. A.; Krische, M. J. Chem. Comm. 2011, 47,
10028-10030. See also: (b) Shin, I.; Hong, S.; Krische, M. J. J. Am. Chem. Soc.
2016, 138, 14246-14249. (c) Feng, J.; Garza, V. J.; Krische, M. J. J. Am. Chem.
Soc. 2014, 136, 8911-8914.
ASSOCIATED CONTENT
Supporting Information
9
Supporting Information is available free of charge on the ACS Publica-
tions website.
Experimental procedures and spectral data (PDF).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
(13) Interestingly, both the bromo and iodo congeners of 10 gave different
results. The former was transformed into a mixture (ca. 1:1) of desired product
13 and symmetric dimer 25 (see SI). The latter appeared to poison 12. Intri-
guingly 25 was also formed when 10 was contaminated with only minor
amounts of its iodo variant (<5%).
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Funding provided by the D. J. & J. M. Cram Endowment, the Human
Frontier Science Program (postdoctoral fellowship to FM,
LT001006/2015-C), the Chinese Scholarship Council (predoctoral
fellowship to LL, 201606205095) and NSF equipment grant (CHE-
1048804). CR was a visiting scholar on leave from the University of
Fribourg. We also thank the group of Professor Hosea Nelson (UCLA)
for the use of their CSP-HPLC instrument. PGH is indebted to Profes-
sor Jared Rutter (HHMI, University of Utah) for hosting his recent
stay in Salt Lake City, where Dr. Sarah Fogarty provided invaluable
guidance on cell culture, live cell microscopy and yeast assays.
(14) Alternatively, 13 could be synthesized from the iodo variant of 10 and the
aldehyde derived from 11 using stoichiometric indium metal (THF, rt, 85-
90%). However diastereoselectivity was poor (ca. 1:1) and separating the iso-
mers was impractical on scale.
(15) (a) Semmelhack, M. F.; Bodurow, C. J. Am. Chem. Soc. 1984, 106, 1496-
1498. (b) Semmelhack, M. F.; Zhang, N. J. Org. Chem. 1989, 54, 4483-4485.
(c) Semmelhack, M. F.; Kim, C.; Zhang, N.; Bodurow, C.; Sanner, M.; Dobler,
W.; Meier, M. Pure & Appl. Chem. 1990, 62, 2035-2040.
(16) (a) Bai, Y.; Davis, D. C.; Dai, M. Angew. Chem. Int. Ed. 2014, 53, 6519-
6522. (b) Bai, Y.; Davis, D. C.; Dai, M. J. Org. Chem. 2017, 82, 2319-2328.
(17) Barltrop, J. A.; Wills, J. Tetrahedron Lett. 1968, 48, 4987-4990.
(18) (a) Jorgenson, M. J. Chem. Commun. 1965, 137-138. (b) Jorgenson, M. J.
J. Am. Chem. Soc. 1969, 91, 198-200.
REFERENCES
(1) (a) Pham, C.-D.; Hartmann, R.; Böhler, P.; Stork, B.; Wesselborg, S.; Lin,
W.; Lai, D.; Proksch, P. Org. Lett. 2014, 16, 266-269.
(2) Oscillariolide: (a) Murakami, M.; Matsuda, H.; Makabe, K.; Yamaguchi, K.
Tetrahedron Lett. 1991, 32, 2391-2394. Phormidolides (b) Williamson, R. T.;
Boulanger, A.; Vulpanovici, A.; Roberts, M.; Gerwick, W. H. J. Org. Chem.
2002, 67, 7927-7936.
(3) (a) Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R. L.; Kohn, K. W. On-
cogene 2004, 23, 2934–2949. (b) Chang, Y.-H.; Yang, Y.-L.; Chen, C.-M.;
Chen, H.-Y. Am. J. Cancer. Res. 2015, 5, 1844-1853.
(4) For the first total syntheses of (−)-callyspongiolide: (a) Zhou, J.; Gao, B.;
Xu, Z.; Ye, T. J. Am. Chem. Soc. 2016, 138, 6948-6951. (b) Ghosh, A. K.;
Kassekert, L. A.; Bungard, J. D. Org. Biomol. Chem. 2016, 14, 11357-11370. For
the synthesis of the antipode see: (c) Ghosh, A. K.; Kassekert, L. A. Org. Lett.
2016, 13, 3274-3277. For fragment studies see: (d) Athe, S.; Sharma, A.; Maru-
mudi, K.; Ghosh, S. Org. Biomol. Chem. 2016, 14, 6769-6779. (e) Matoušova,
E.; Koukal, P.; Formánek, B.; Kotora, M. Org. Lett. 2016, 18, 5656-5659.
(5) (a) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.;
Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenev-
ert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garratt, D. G.; ̂ Hayakawa, K.; Heg-
gie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P.
A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.;
Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu,
T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.;
Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick,
W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc. 1981,
103, 3210-3213. (b) Stork, G.; Nair, V. J. Am. Chem. Soc. 1979, 101, 1315–
1316.
(19) Gibson, A. W.; Humphrey, G. R.; Kennedy, D. J.; Wright, S. H. B. Synthe-
sis 1991, 414-416.
(20) The small amount of cis olefin produced in the enyne preparation allowed
us to isolate callyspongiolide isomer 26 following Sonogashira coupling of 23
with (R)-24. Brief photolysis of 26 under conditions identical to those used to
interconvert E- and Z-21 resulted in roughly a 1:1 mixture of 26 and 1 contain-
ing lesser amounts of isomeric byproducts.
(21) Following the protocols reported, the ∆2,3-E isomer of (−)-
callyspongiolide can be easily accessed from the E isomer of 21 (see SI).
(22) Synthetic (−)-callyspongiolide (1) was handled following the procedure
reported in: Hensgen, M. I.; Stump, B. Methods Mol. Biol. 2013, 1045, 133-143.
(6) (a) Wright, A. E.; Botelho, J. C.; Guzmán, E.; Harmody, D.; Linley, P.;
McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70,
412-416. (b) D'Ambrosio, M.; Guerriero, A.; Debitus, C.; Pietra, F. Helv. Chim.
ACS Paragon Plus Environment