Angewandte Chemie International Edition
10.1002/anie.202003831
COMMUNICATION
[
[
3] a) G. Parisi, M. Colella, S. Monticelli, G. Romanazzi, W. Holzer, T.
Langer, L. Degennaro, V. Pace, R. Luisi, J. Am. Chem. Soc. 2017,
d) A. Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki, J. Yoshida,
Angew. Chem., Int. Ed. 2012, 51, 3245; e) T. Fujita, N. Konno, Y.
Watabe, T. Ichitsuka, A. Nagaki, J. Yoshida, J. Ichikawa, J.
Fluorine Chem. 2018, 207, 72; f) A. Nagaki, H. Yamashita, K.
Hirose, Y. Tsuchihashi, J. Yoshida, Angew. Chem. Int. Ed. 2019, 58,
4027. g) D. Ichinari, Y. Ashikari, K. Mandai, Y. Aizawa, J. Yoshida,
A. Nagaki, Angew. Chem., Int. Ed. 2020, 59, 1567.
1
39, 13648; b) S. Monticelli, M. Colella, V. Pillari, A. Tota, T.
Langer, W. Holzer, L. Degennaro, R. Luisi, V. Pace, Org. Lett. 2019,
1, 584; c) M. Colella, A. Tota, A. Großjohann, C. Carlucci, A.
Aramini, N. S. Sheikh, L. Degennaro, R. Luisi, Chem. Commun.
019, 55, 8430.
2
2
4] Books on flow microreactor synthesis: a) Microreactors in Organic
Chemistry and Catalysis, 2nd ed. (Ed.: T. Wirth), Wiley, Hoboken,
[8]
For
the
optimization
study
N-methoxy-N-methyl-3-
phenylpropanamide, was selected as model electrophile. The
trapping reaction of such electrophile in a batch reactor occurred
with a 34% yield (see ref. [3] a)).
2
013; b) Microreactors in Preparative Chemistry; (Ed.: W.
Reschetilowski), Wiley-VCH, Weinheim, 2013; c) F. Darvas, V.
Hessel, G. Dorman, Flow Chemistry, DeGruyter: Berlin, 2014; d) J.
Yoshida, Basics of Flow Microreactor Synthesis, Springer, Tokyo,
[9] a) D. Seyferth, F. M. Armbrecht, E. M. Hanson, J. Organomet.
Chem. 1967, 10, 25; b) D. Seyferth, F. M. Armbrecht, R. L. Lambert,
W. Tronich, J. Organomet. Chem. 1972, 44, 25.
2
015; e) Organometallic Flow Chemistry; (Ed.: T.
Noël), Springer, 2016.
[
5] Some selected recent reviews on flow microreactor synthesis: a) S.
Marrea, K. F. Jensen, Chem. Soc. Rev. 2010, 39, 1183; b) D. Webb,
T. F. Jamison, Chem. Sci. 2010, 1, 675; c) J. P. McMullen, K. F.
Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19; d) J. Yoshida, H. Kim,
A. Nagaki, ChemSusChem 2011, 4, 331; e) C. Wiles, P. Watts,
GreenChem. 2012, 14, 38; f) A. Kirschining, L. Kupracz, J. Hartwig,
Chem. Lett. 2012, 41, 562; g) D. T. McQuade, P. H. Seeberger, J.
Org. Chem. 2013, 78, 6384; h) K. S. Elvira, X. C. I. Solvas, R. C. R.
Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905; i) J. C. Pastre, D.
L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849; j) I. R.
Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519; k) T.
Fukuyama, T. Totoki, I. Ryu, Green Chem. 2014, 16, 2042; l) D.
Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem.
Rev. 2016, 116, 10276; m) M. B. Plutschack, B. Pieber, K. Gilmore,
P. H. Seeberger, Chem. Rev. 2017, 117, 11796; n) M. Colella, A.
Nagaki, R. Luisi, Chem. Eur. J. 2020, 26, 19.
[
6] Some selected recent examples: a) D. Cantillo, M. Baghbanzadeh, C.
O. Kappe, Angew. Chem. Int. Ed. 2012, 51, 10190; b) W. Shu, S. L.
Buchwald, Angew. Chem. Int. Ed. 2012, 51, 5355; c) F. Lévesque,
P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 1706; d) K. C.
Basavaraju, S. Sharma, R. A. Maurya, D. P. Kim, Angew. Chem. Int.
Ed. 2013, 52, 6735; e) C. Brancour, T. Fukuyama, Y. Mukai, T.
Skrydstrup, I. Ryu, Org. Lett. 2013, 15, 2794; f) J. D. Nguyen, B.
Reiß, C. Dai, C. R. J. Stephenson, Chem. Commun. 2013, 49, 4352;
g) C. Battilocchio, J. M. Hawkins, S. V. Ley, Org. Lett. 2013, 15,
2
278; h) A. S. Kleinke, T. F. Jamison, Org. Lett. 2013, 15, 710; i) K.
Asano, Y. Uesugi, J. Yoshida, Org. Lett. 2013, 15, 2398; j) L.
Guetzoyan, N. Nikbin, I. R. Baxendale, S. V. Ley, Chem. Sci. 2013,
4
2
5
2
, 764; k) S. Fuse, Y. Mifune, T. Takahashi, Angew. Chem. Int. Ed.
014, 53, 851; l) Z. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014,
3, 3353; m) A. Nagaki, Y. Takahashi, J. Yoshida, Chem. Eur. J.
014, 20, 7931; n) L. Degennaro, F. Fanelli, A. Giovine, R. Luisi,
Adv. Synth. Cat. 2015, 357, 21; m) M. Chen, S. Ichikawa, S. L.
Buchwald, Angew. Chem. Int. Ed. 2015, 54, 263; o) L. Degennaro,
C. Carlucci, S. De Angelis, R. Luisi, J. Flow. Chem. 2016, 6, 136;
p) S. Fuse, Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun.
2
016, 7, 13491; q) L. Degennaro, D. Maggiulli, C. Carlucci, F.
Fanelli, G. Romanazzi, R. Luisi, Chem. Commun. 2016, 52, 9554; r)
A. Nagaki, Y. Takahashi, J. Yoshida, Angew. Chem. Int. Ed. 2016,
5
9
5, 5327; s) H. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017,
, 453; t) K. Komuro, A. Nagaki, H. Shimoda, M. Uwamori, J.
Yoshida, M. Nakada, Synlett 2018, 29, 1989; u) H. Kim, Y.
Yonekura, J. Yoshida, Angew. Chem. Int. Ed. 2018, 57, 4063; v) S.
De Angelis, C. A. Hone, L. Degennaro, P. Celestini, R. Luisi, O.
Kappe, J. Flow. Chem. 2018, 8, 109. w) K. Tanaka, H. Yoshizawa,
M. Atobe, Synlett 2019, 30, 1194; x) A. Giovine, B. Musio, L.
Degennaro, A. Falcicchio, A. Nagaki, J.-i. Yoshida, R. Luisi, Chem.
–
Eur. J. 2013, 19, 1872–1876; y) Y. Otake, H. Nakamura, S. Fuse,
Angew. Chem., Int. Ed. 2018, 57, 11389
[
7] a) H. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami, J.
Yoshida, J. Am. Chem. Soc. 2007, 129, 3047; b) A. Nagaki, E.
Takizawa, J. Yoshida, J. Am. Chem. Soc. 2009, 131, 1654; c) Y.
Tomida, A. Nagaki, J. Yoshida, J. Am. Chem. Soc. 2011, 133, 3744;
This article is protected by copyright. All rights reserved.