C O M M U N I C A T I O N S
Table 1. Synthesis of Chiral Porphyrins 3 and Cobalt Complexes
diastereomer in 95% ee, which was further improved to 98% ee at
-20 °C (entries 9 and 10).12 The same structure modification
resulted in 96% ee for the cis-(1S,2R)-isomer with 4m and 95% ee
for the cis-(1R,2S)-isomer with 4n (entries 12 and 14). The results
obtained with 4o bearing meso-n-heptyl groups (entries 15 and 16)
further underline the importance of both R and R* groups of the
chiral porphyrins 4 in achieving high selectivities.
In summary, we have demonstrated that the readily accessible
5,10-bis(2′,6′-dibromophenyl)porphyrins are versatile synthons for
modular construction of chiral porphyrins via palladium-catalyzed
multiple amidation reactions with chiral amides. Cobalt(II) com-
plexes of the D2-symmetric chiral porphyrins are shown to be active
catalysts for highly enantioselective and diastereoselective cyclo-
propanation under a practical one-pot protocol. We are currently
working to expand the applications of this family of chiral
porphyrins in various asymmetric catalytic processes.
4a
entry
R
1
2
3, yield (%)a
4, yield (%)a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Ph
Ph
Ph
Ph
4-t-BuPh
4-CF3Ph
1a
1a
1a
1a
1b
1c
1d
1e
1f
1g
1h
1i
1i
1i
2a
2b
2c
2d
2a
2a
2a
2a
2a
2a
2a
2a
2c
2d
2a
2a
3a, 78
3b, 64
3c, 75
3d, 71
3e, 86
3f, 77
3g, 46
3h, 66
3i, 84
3j, 59
3k, 88
3l, 85
3m, 79
3n, 72
3o, 74
3p, 79
4a, 88
4b, 86
4c, 95
4d, 95
4e, 72
4f, 95
4g, 86
4h, 83
4i, 91
4j, 95
4k, 96
4l, 91
4m, 96
4n, 92
4o, 95
4p, 91
pentaFPh
4-acetylPh
2,4,6-triMePh
2,6-diMeOPh
3,5-diMeOPh
3,5-di-t-BuPh
3,5-di-t-BuPh
3,5-di-t-BuPh
4-n-heptyl
H
1j
1k
Acknowledgment. We are grateful for financial supports of this
work from the University of Tennessee, Oak Ridge Associated
Universities (ORAU) for a Ralph E. Powe Junior Faculty Enhance-
ment Award, and Hereditary Disease Foundation (HDF).
a See Supporting Information for details. b Yields represent isolated yields
of >95% purity as determined by H NMR.
1
Table 2. Asymmetric Cyclopropanation of Styrene Catalyzed by
4a
Supporting Information Available: Experimental procedures and
analytical data for all new compounds. This material is available free
References
(1) Kadish, K. M., Smith, K. M., Guilard, R., Eds. The Porphyrin Handbook;
Academic Press: San Diego, CA, 2000-2003; Vols. 1-20.
(2) (a) Metalloporphyrins Catalyzed Oxidations; Montanari, F., Casella, L.,
Eds.; Kluwer Academic: Boston, 1994. (b) Metalloporphyrins in Catalytic
Oxidations; Sheldon, R. A., Ed.; Marcel Dekker: New York, 1994.
(3) Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983, 105, 5791.
(4) (a) Marchon, J.-C. In The Porphyrin Handbook; Kadish, K. M., Smith,
K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2003; Vol.
11, pp 75-132. (b) Simonneaux, G.; Le Maux, P. Coord. Chem. ReV.
2002, 228, 43. (c) Rose, E.; Quelquejeu, M.; Pandian, R. P.; Lecas-
Nawrocka, A.; Vilar, A.; Ricart, G.; Collman, J. P.; Wang, Z.; Straumanis,
A. Polyhedron 2000, 19, 581. (d) Collman, J. P.; Wang, Z. Chemtracts
1999, 12, 229. (e) Rose, E.; Lecas, A.; Quelquejeu, M.; Kossanyi, A.;
Boitrel, B. Coord. Chem. ReV. 1998, 178, 1407. (f) Collman, J. P.; Zhang,
X. M.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I. Science 1993, 261,
1404. (g) Rose, E.; Ren, Q.-Z.; Andrioletti, B. Chem. Eur. J. 2004, 10,
224.
(5) (a) Collman, J. P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.;
Robinson, W. T. J. Am. Chem. Soc. 1975, 97, 1427. (b) Leondiadis, L.;
Momenteau, M. J. Org. Chem. 1989, 54, 6135.
(6) Rose, E.; Kossanyi, A.; Quelquejeu, M.; Soleilhavoup, M.; Duwavran,
F.; Bernard, N.; Lecas, A. J. Am. Chem. Soc. 1996, 118, 1567.
(7) (a) Collman, J. P.; Lee, V. J.; Zhang, X. M. Inorg. Synth. 1997, 31, 117.
(b) Tsuchida, E.; Komatsu, T.; Hasegawa, E.; Nishide, H. J. Chem. Soc.,
Dalton Trans. 1990, 2713.
entry
4
diazo
additv
yield (%)b
trans:cisb
ee (%)c
configd
1
2
3
4
5
6
7
8
9
4a
4b
4c
4d
4a
4c
4d
4l
EDA
EDA
EDA
EDA
EDA
EDA
EDA
EDA
92 (-)
77 (-)
92 (-)
95 (-)
87:13
66:34
32:68
32:68
96:04
44:56
42:58
97:03
31
35
48
51
67
88
89
78
95
98
92
96
94
95
59
78
1R,2R
1S,2S
1S,2R
1R,2S
1R,2R
1R,2R
1R,2R
1R,2R
1R,2R
1R,2R
1S,2R
1S,2R
1R,2S
1R,2S
1R,2R
1R,2R
DMAP 91 (-)
DMAP 52 (-)
DMAP 57 (-)
DMAP 86 (82)
4l
4l
t-BDA DMAP 88 (84) >99:01
t-BDA DMAP 84 (85) >99:01
10e
11
12f
13
14f
15
16
4m EDA
4m t-BDA DMAP 78 (75)
4n
4n
4o
4o
DMAP 65 (59)
31:69
37:63
30:70
38:62
96:04
99:01
EDA
t-BDA DMAP 76 (-)
EDA DMAP 80 (-)
t-BDA DMAP 73 (-)
DMAP 68 (-)
(8) Nakagawa, H.; Nagano, T.; Higuchi, T. Org. Lett. 2001, 3, 1805.
(9) (a) Chen, Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 4432. (b) Gao, G. Y.;
Chen, Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 6215. (c) Gao, G. Y.;
Colvin, A. J.; Chen, Y.; Zhang, X. P. Org. Lett. 2003, 5, 3261. (d) Gao,
G. Y.; Chen, Y.; Zhang, X. P. Org. Lett. 2004, 6, 1837. (e) Gao, G. Y.;
Colvin, A. J.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2004, accepted.
(10) Lindsey, J. S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M.,
Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1, pp
45-118.
a Reactions were carried out at room temperature in toluene for 20 h
under N2 with 1.0 equiv of styrene, 1.2 equiv of diazo reagent, and 1 mol
% 4 in the presence of 0.5 equiv of additive. Concentration: 0.25 mmol
styrene/mL of toluene. b Determined by GC. Yields in parentheses represent
isolated yields. c ee of major diastereomer determined by chiral GC.
d Absolute configuration of major enantiomer determined by optical rotation.
e Carried out at -20 °C for 8 h. f 5 mol % 4 was used.
(11) For selected recent examples on metal-catalyzed cyclopropanation, see:
(a) Niimi, T.; Uchida, T.; Irie, R.; Katsuki, T. AdV. Synth. Catal. 2001,
343, 79. (b) Ikeno, T.; Sato, M.; Sekino, H.; Nishizuka, A.; Yamada, T.
Bull. Chem. Soc. Jpn. 2001, 74, 2139. (c) Che, C.-M.; Huang, J.-S. Coord.
Chem. ReV. 2002, 231, 151. (d) Berkessel, A.; Kaiser, P.; Lex, J. Chem.
Eur. J. 2003, 9, 4746. (e) Gross, Z.; Galili, N.; Simkhovich, L. Tetrahedron
Lett. 1999, 40, 1571. (f) Du, G.; Andrioletti, B.; Rose, E.; Woo, L. K.
Organometallics 2002, 21, 4490. (g) Huang, L.; Chen, Y.; Gao, G.-Y.;
Zhang, X. P. J. Org. Chem. 2003, 68, 8179.
enantioselectivities were doubled when 0.5 equiv of 4-(dimethyl-
amino)pyridine (DMAP) was added (entries 5-7), suggesting
significant trans influence of potential coordinate ligands on the
metal center. The DMAP additive also boosted the production of
the trans isomer (entries 5-7). Further improvements in diastereo-
selectivity and enantioselectivity were observed when 4a was
replaced with 4l, where the two meso-groups are 3,5-di-tert-
butylphenyl instead of phenyl (entry 8). When t-BDA was used,
the same catalyst produced the trans-(1R,2R)-isomer as the only
(12) It is reasonable to expect that the same results would be obtained for the
trans-(1S,2S)-isomer if the enantiomer of 4l is employed as a catalyst.
JA044889L
9
J. AM. CHEM. SOC. VOL. 126, NO. 45, 2004 14719