Communication
RSC Advances
Scientic Research Start-up Foundation of Nanjing Normal
University (2011103XGQ0250), the SRF for ROCS, SEM, and the
Priority Academic Program Development of Jiangsu Higher
Education Institutions.
Notes and references
1
(a) T. Ishiyama, H. Kizaki, N. Miyaura and A. Suzuki,
Tetrahedron Lett., 1993, 34, 7595.
2
(a) C. Y. K. Chan, Z. J. Zhao, J. W. Y. Lam, J. Z. Liu, S. M. Chen,
P. Lu, F. Mahtab, X. J. Chen, H. H. Y. Sung, H. S. Kwok,
Y. G. Ma, I. D. Williams, K. S. Wong and B. Z. Tang, Adv.
Funct. Mater., 2012, 22, 378; (b) K. Maeyama, K. Yamashita,
H. Saito, S. Aikawa and Y. Yoshida, Polym. J., 2012, 44, 315;
Fig. 1 Reusability of catalyst. Reaction conditions: 1a (0.5 mmol), 2a
(
3 4
0.75 mmol), CO (balloon), K PO (1.0 mmol), tBuCOOH (0.25 mmol),
ꢀ
nanocopper (20 mol%), PEG-400 (2.0 mL), 80 C.
(
c) A. Wen, Z. Wang, T. Hang, Y. Jia, T. Zhang, Y. Wu,
X. Gao and Z. Yang, J. Chromatogr. B: Anal. Technol.
Biomed. Life Sci., 2007, 856, 348; (d) W. L. Zhao and
E. M. Carreira, Org. Lett., 2006, 8, 99; (e) A. L. Ong,
A. H. Kamaruddin and S. Bhatia, Process Biochem., 2005,
40, 3526; (f) M. Furusawa, Y. Ido, T. Tanaka, T. Ito,
K. Nakaya, I. Ibrahim, M. Ohyama, M. Iinuma, Y. Shirataka
and Y. Takahashi, Helv. Chim. Acta, 2005, 88, 1048; (g)
F. Bosca and M. A. Miranda, J. Photochem. Photobiol., B,
Scheme 3 The effect of the presence of Hg additive.
1998, 43, 1; (h) N. De Kimpe, M. Keppens and G. Froncg,
Chem. Commun., 1996, 5, 635; (i) G. Dorman and
G. D. Prestwich, Biochemistry, 1994, 33, 5661.
organic phase (using ICP-MS) was observed to be 1.2% of the
starting Cu.
3
For some recent reviews on Pd-catalyzed carbonylations of
aryl halides, see: (a) S. T. Gadge and B. M. Bhanage, RSC
Adv., 2014, 4, 10367; (b) X.-F. Wu, H. Neumann and
M. Beller, Chem. Rev., 2013, 113, 1; (c) X.-F. Wu,
H. Neumann and M. Beller, Chem. Soc. Rev., 2011, 40,
Although commercially available nanocopper was directly
employed to catalyzed the carbonylative Suzuki reactions, we
still wondered whether the catalysis occurred on the cluster
13
surface or by leached copper species. A mercury additive was
14
4
5
986; (d) R. Grigg and S. P. Mutton, Tetrahedron, 2010, 66,
515; (e) A. Brennf u¨ hrer, H. Neumann and M. Beller,
used to test nano-metal catalyst. Control experiments were
conducted, as shown in Scheme 3. The reaction of 1k with 2a
under carbon monoxide (1 atm) was almost completely inhibi-
ted when 200 equiv. of Hg(0) with respect to copper was added.
Thus, it is likely that copper nanoparticles are the real working
catalyst.
Angew. Chem., Int. Ed., 2009, 48, 4114.
(a) Q. Zhou, S. H. Wei and W. Han, J. Org. Chem., 2014, 79,
4
1454; (b) M. Z. Cai, J. Peng, W. Y. Hao and G. D. Ding,
Green Chem., 2011, 13, 190; (c) H. L. Li, M. Yang, Y. X. Qi
and J. J. Xue, Eur. J. Org. Chem., 2011, 2662; (d) M. Z. Cai,
G. M. Zheng, L. F. Zha and J. Peng, Eur. J. Org. Chem.,
In conclusion, we have developed the rst copper-catalyzed
carbonylative Suzuki reactions of aryl iodides with arylboronic
acids, which affords the best product yields in the absence of a
ligand and under atmospheric pressure of carbon monoxide.
The transformation tolerates a variety of functional groups on
both coupling partners. Diiodobenzenes such as 1,4-diiodo-
benzene (1p) and 1,3-diiodobenzene (1q) can also undergo
successive carbonylative Suzuki reactions. Notably, the catalytic
system is based on environmentally benign solvent and can be
recycled up to ten times with satisfactory yields. Control
experiments suggest that copper nanoparticles likely catalyzed
the reactions.
2009, 1585; (e) G. M. Zheng, P. P. Wang and M. Z. Cai,
Chin. J. Chem., 2009, 27, 1420; (f) B. M. O'Keefe,
N. Simmons and S. F. Martin, Org. Lett., 2008, 10, 5301; (g)
S. Z. Zheng, L. W. Xu and C. G. Xia, Appl. Organomet.
Chem., 2007, 772; (h) P. Prediger, A. V. Moro,
C. W. Nogueira, L. Savegnago, P. H. Menezes,
J. B. T. Rocha and G. Zeni, J. Org. Chem., 2006, 71, 3786; (i)
M. J. Dai, B. Liang, C. H. Wang, Z. J. You, J. Xiang,
G. B. Dong, J. H. Chen and Z. Yang, Adv. Synth. Catal.,
2004, 346, 1669; (j) B. M. O'Keefe, N. Simmons and
S. F. Martin, Tetrahedron, 2001, 67, 4344; (k) T. Ishiyama,
H. Kizaki, T. Hayashi, A. Suzuki and N. Miyaura, J. Org.
Chem., 1998, 63, 4726–4731; (l) T. Ishiyama, H. Kizaki,
N. Miyaura and A. Suzuki, Tetrahedron Lett., 1993, 34, 7595.
Acknowledgements
The work was sponsored by the Natural Science Foundation of
China (21302099), the Natural Science Foundation of Jiangsu
Province (BK2012449), the Natural Science Foundation of
Jiangsu Provincial Colleges and Universities (12KJB150014), the
5 Y. Z. Zhong and W. Han, Chem. Commun., 2014, 50, 3874.
6 For special reviews on copper-catalyzed cross-couplings, see:
(a) J. Magano and J. R. Dunetz, Chem. Rev., 2011, 111, 2177;
(b) H. H. Rao and H. Fu, Synlett, 2011, 745; (c) D. S. Surry and
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 44312–44316 | 44315