Please do not adjust margins
RSC Advances
DOI: 10.1039/C5RA17652B
ARTICLE
Journal Name
In addition, it is recently reported that CuꢀS system is a new Acknowledgements
promising semiconductor photothermal conversion platforms
The authors are grateful for financial support from National
Natural Science Foundation of China (No. 51203069,
with relatively high photothermal conversion efficiency, good
4
2
photostability, synthetic simplicity, low toxicity and low cost.
5
1102117, 21201010, 21203079), Jiangsu Natural Science
It can effectively induce temperature elevation under NIR
irradiation, which would provide a possible route for cancer
treatment.
Foundation (No. BK2012276), and Cultivating Project of
Young Academic Leader from Jiangsu University.
The NIR photothermal conversion property of the obtained
CuꢀS samples in the aqueous dispersions was then examined at
a fixed concentration of 0.03 mg/mL. The results are shown in
Figure 9. The pure water system was also tested for
comparison. It is obvious that, for the pure water, the NIR
irradiation (980 nm) caused a temperature increase of only
about 4 °C after 8 min. For the aqueous dispersion of CuꢀS
products, the NIR irradiation induced temperature elevation is
much higher than the pure water. For the mixtured sample with
Notes and references
1
2
3
4
5
6
7
N. P. Dasgupta, X. B. Meng, J. W. Elam and A. B. F.
Martinson, Acc. Chem. Res., 2015, 48, 341ꢀ348.
P. Miro, M. Audiffred and T. Heine, Chem. Soc. Rev., 2014,
43, 6537ꢀ6554.
X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Nature
001, 421, 214ꢀ245.
S. M. Farkhani and A. Valizadeh, Let Nanobiotechnol., 2014,
, 59ꢀ76.
,
2
8
o
CuS and Cu1.8S phase, the temperature increase is 6 C, while
Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan
and J. R. Gong, J. Am. Chem. Soc., 2011, 133, 10878ꢀ10884.
M. Karppinen and H. Yamauchi, Mater. Sci. Eng., 1999, 26,
the pure phase Cu1.8S sample gives a higher temperature
o
increase of 7 C, suggesting the better photothermal conversion
5
1ꢀ96.
property of Cu1.8S than that of CuS. It should be noted that all
the aqueous dispersions reach a temperature platform with
irradiation for 8 min, suggesting a thermal equilibrium between
laser energy input and thermal diffusion towards environment
are obtained at this stage. After that, the laser is closed, the
temperature then decreases to room temperature.
T. M. Mcqueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu,
H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J.
Checkelsky, N. P. Ong and R. J. Cava, Phys. Rev. B, 2009,
79, 014522ꢀ1ꢀ7.
8
9
1
T. A. Miller, J. S. Wittenberg, H. Wen, S. Connor, Y. Cui and
A. M. Lindenberg, Nat. Commun., 2013, 4, 1369ꢀ1ꢀ7.
W. Bryks, M. Wette, N. Velez, S. W. Hsu and A. R. Tao, J.
Am. Chem. Soc., 2014, 136, 6175ꢀ6178.
0 W. P. Lim, C. T. Wong, S. L. Ang, H. Y. Low and W. S.
Chin, Chem. Mater., 2006, 18, 6170ꢀ6177.
11 H. Lee, S. W. Yoon, E. J. Kim and J. Park, Nano Lett., 2007,
water
34.5
33.0
31.5
30.0
28.5
27.0
mixed Cu1.8S and CuS
7, 778ꢀ784.
Cu1.8S
12 L. R. Guo, D. D. Yan, D. F. Yang, Y. J. Li, X. D. Wang, O.
Zalewski, B. F. Yan and W. Lu, ACS Nano, 2014, 8, 5670ꢀ
5681.
1
1
1
3 E. Thimsen, U. R. Kortshagen and E. S. Aydil, Chem.
Commun., 2014, 50, 8346ꢀ8349.
4 W. Han, L. Yi, N. Zhao, A. Tang, M. Gao and Z. Tang, J.
Am. Chem. Soc., 2008, 130, 13152ꢀ13161.
5 P. Nørby, S. Johnsen and B. B. Iversen, ACS Nano, 2014, 8,
4295ꢀ4303.
irradiation stop
0
250
500
750
1000 1250
16 Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos,
Time / s
Nano Lett., 2008, 8, 2551ꢀ2555.
1
7 D. Mott, J. Yin, M. Engelhard, R. Loukrakpam, P. Chang, G.
Miller, I. T. Bae, N. Chandra Das, C. Wang, J. Luo and C. J.
Zhong, Chem. Mater., 2010, 22, 261ꢀ271.
Fig 9. Temperature variations for pure water and aqueous dispersions of the obtained
copper sulfide samples with NIR irradiation time for 0ꢀ8 min, and then the laser was
shut off. The concentration of the CuꢀS products is 0.03 mg/mL.
1
1
8 Z. Zhuang, X. Lu, Q. Peng and Y. Li, Chem. Eur. J., 2011,
1
7, 10445ꢀ10452.
9 W. Aigner, G. K. Nenova, M. A. Sliem, R. A. Fischer, M.
Conclusions
Stutzmann and R. N. Pereira, J. Phys. Chem. C, 2015, 119,
1
6276ꢀ16285.
We have demonstrated that TPP can be used for the phaseꢀ
selective extraction of sulfur from sulfurꢀrich copper sulfides.
This provides
2
0 M. Kruszynska, H. Borchert, A. Bachmatiuk, M. H.
Rümmeli, B. Büchner, J. Parisi and J. KolnyꢀOlesiak, ACS
Nano, 2012, 6, 5889ꢀ5896.
a new phase transformation strategy for
2
2
1 M. Kanehara, H. Arakawa, T. Honda, M. Saruyama and
T.Teranishi, Chem. Eur. J., 2012, 18, 9230ꢀ9238.
2 Y. Zhang, X. Li, W. Xu, S. Li, H. Wang and L. S. Li, Mater.
Lett., 2012, 67, 117ꢀ120.
manipulating the compositions and structures of CuꢀS system,
which would also have applicability to purification of
multiphase samples. In addition, the clock reaction catalyzed by
CuꢀS based product has been demonstrated. Our study on the 23 X. L. Wang, Y. J. Ke, H. Y. Pan, K. Ma, Q. Q. Xiao, D. Q.
catalytic properties and the photothermal conversion properties
Yin, G. Wu and M. T. Swihart, ACS Catal., 2015, 5, 2534ꢀ
540.
2
of the CuꢀS based products reveals that the obtained Cu1.8
materials show enhanced or similar properties than the original
mixedꢀphase CuꢀS products.
S
2
4 S. D. Sun, S. Wang, D. C. Deng and Z. M. Yang, New J.
Chem., 2013, 37, 3679ꢀ3684.
5 M. Lotfipour, T. Machani, D. P. Rossi and K. E. Plass, Chem.
Mater., 2011, 23, 3032ꢀ3038.
2
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins