2096
A.I. Martínez-Gómez et al. / Process Biochemistry 47 (2012) 2090–2096
[4] Magriotis PA. Recent progress in the enantioselective synthesis of beta-
lactams: development of the first catalytic approaches. Angew Chem Int Ed
2001;40:4377–9.
[5] Artioli GG, Gualano B, Smith A, Stout J, Lancha Jr AH. Role of beta-alanine sup-
plementation on muscle carnosine and exercise performance. Med Sci Sports
Exerc 2010;42:1162–73.
[6] Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and
beta-alanine supplementation in relation to exercise and training. Sports Med
2010;40:247–63.
[7] Cohen YR. -Aminobutyric acid-induced resistance against plant pathogens.
Plant Dis 2002;86:448–57.
[32] Martínez-Rodríguez S, Martínez-Gómez AI, Pozo-Dengra J, Rodríguez-Vico F,
Clemente-Jiménez JM, Las Heras-Vázquez FJ. Abstr P-109. Abstr. International
symposium on environmental biocatalysis. European Federation of Biotechnol-
ogy Section on Applied Biocatalysis. Cordoba, Spain; 2006.
[33] Martínez-Rodríguez S, Martínez-Gómez AI, Clemente-Jiménez JM, Rodríguez-
Vico F, García-Ruíz JM, Las Heras-Vázquez FJ, et al. Structure of dihy-
dropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an
amidohydrolase family member. J Struct Biol 2010;169:200–8.
[34] Servi S, Syldatk C, Vielhauer O, Tessaro D. Abstr. Biotrans, 7th international
symposium on biocatalysis and biotransformations, abstr. P-318. Delft, The
Netherlands; 2005.
[8] Edreva A. A novel strategy for plant protection: induced resistance. J Cell Mol
Biol 2004;3:61–9.
[35] Engel U, Syldatk C, Rudat J. Stereoselective hydrolysis of aryl-substituted dihy-
dropyrimidines by hydantoinases. Appl Microbiol Biotechnol; in press.
[9] Begriche K, Massart J, Abbey-Toby A, Igoudjil A, Lettéron P, Fromenty B. Beta-
aminoisobutyric acid prevents diet-induced obesity in mice with partial leptin
deficiency. Obesity (Silver Spring) 2008;16:2053–67.
[36] O’Neill M, Hauer B, Schneider N, Turner NJ. Enzyme-catalyzed enantioselective
hydrolysis of dihydrouracils as a route to enantiomerically pure -amino acids.
ACS Catal 2011;1:1014–6.
[10] Begriche K, Massart J, Fromenty B. Effects of -aminoisobutyric acid on leptin
production and lipid homeostasis: Mechanisms and possible relevance for the
prevention of obesity. Fundam Clin Pharmacol 2010;24:269–82.
[11] Abele S, Seebach D. Preparation of achiral and of enantiopure gemi-
nally disubstituted -amino acids for -peptide synthesis. Eur J Org Chem
2000;2000:1–15.
[12] Cardillo G, Tomasini C. Asymmetric synthesis of -amino acids and ␣-
substituted -amino acids. Chem Soc Rev 1996;25:117–28.
[13] Cole DC. Recent stereoselective synthetic approaches to -amino acids. Tetra-
hedron 1994;50:9517–82.
[14] Fülöp F. The chemistry of 2-aminocycloalkanecarboxylic acids. Chem Rev
2001;101:2181–204.
[15] Lelais G, Seebach D. 2-Amino acids-syntheses, occurrence in natural products,
and components of -peptides. Biopolymers 2004;76:206–43.
[16] Liu M, Sibi MP. Recent advances in the stereoselective synthesis of -amino
acids. Tetrahedron 2002;58:7991–8035.
[37] Martínez-Gómez AI, Andújar-Sánchez M, Clemente-Jiménez JM, Neira JL,
Rodríguez-Vico F, Martínez-Rodríguez S, et al. N-Carbamoyl--alanine ami-
dohydrolase from Agrobacterium tumefaciens C58: a promiscuous enzyme for
the production of amino acids. J Chromatogr B: Anal Technol Biomed Life Sci
2011;879:3277–82.
[38] Martínez-Gómez AI, Martínez-Rodríguez S, Pozo-Dengra J, Tessaro D, Servi S,
Clemente-Jiménez JM, et al. Potential application of N-carbamoyl--alanine
amidohydrolase from Agrobacterium tumefaciens C58 for -amino acid pro-
duction. Appl Environ Microbiol 2009;75:514–20.
[39] Dürr R, Neumann A, Vielhauer O, Altenbuchner J, Burton SG, Cowan DA, et al.
Genes responsible for hydantoin degradation of a halophilic Ochrobactrum sp.
G21 and Delftia sp. I24-new insight into relation of d-hydantoinases and dihy-
dropyrimidinases. J Mol Catal B 2008;52–53:2–12.
[40] Martínez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, Clemente-
Jiménez JM, Las Heras-Vázquez FJ. Carbamoylases: characteristics and
applications in biotechnological processes. Appl Microbiol Biotechnol
2010;85:441–58.
[41] Zee-Cheng K-Y, Robins RK, Cheng CC. Pyrimidines. III. 5,6-Dihydropyrimidines.
J Org Chem 1961;26:1877–83.
[42] Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Short
protocols in molecular biology. New York, NY: John Wiley and Sons, Inc.;
1992.
[43] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd
ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
[44] Boyd WJ. The isolation of amino-acids in the form of the corresponding
carbamido-acids and hydantoins. J Biochem 1933;27:1838–48.
[45] Las Heras-Vázquez FJ, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-
Vico F. Engineering cyclic amidases for non-natural amino acid synthesis.
Methods Mol Biol 2012;794:87–104.
[17] Ma J-A. Recent developments in the catalytic asymmetric synthesis of ␣- and
-amino acids. Angew Chem Int Ed 2003;42:4290–9.
[18] Liljeblad A, Kanerva LT. Biocatalysis as a profound tool in the preparation of
highly enantiopure -amino acids. Tetrahedron 2006;62:5831–54.
[19] Turner NJ. Ammonia lyases and aminomutases as biocatalysts for the synthesis
of ␣-amino and -amino acids. Curr Opin Chem Biol 2011;15:234–40.
[20] Wu B, Szyman´ ski W, Heberling MM, Feringa BL, Janssen DB. Aminomutases:
mechanistic diversity, biotechnological applications and future perspectives.
Trends Biotechnol 2011;29:352–62.
[21] Wasternack C. Degradation of pyrimidines-enzymes, localization and role in
metabolism. Biochem Physiol Pflanzen 1978;173:467–99.
[22] Altenbuchner J, Siemann-Herzberg M, Syldatk C. Hydantoinases and related
enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr
Opin Biotechnol 2001;12:559–63.
[46] Martínez-Rodríguez S, González-Ramírez LA, Clemente-Jiménez JM,
Rodríguez-Vico F, Las Heras-Vázquez FJ, Gavira JA, et al. Crystallization
and preliminary crystallographic studies of the recombinant dihydropyrim-
idinase from Sinorhizobium meliloti CECT4114. Acta Crystallogr Sect F: Struct
Biol Cryst Commun 2006;62:1223–6.
[23] Aranaz I, Acosta N, Heras A. Encapsulation of an Agrobacterium radiobacter
extract containing d-hydantoinase and d-carbamoylase activities into alginate-
chitosan polyelectrolyte complexes. Preparation of the biocatalyst. J Mol Catal
B: Enzym 2009;58:54–64.
[24] Burton SG, Dorrington RA, Hartley C, Kirchmann S, Matcher G, Phehane V. Pro-
duction of enantiomerically pure amino acids: characterisation of South African
hydantoinases and hydantoinase-producing bacteria. J Mol Catal B: Enzym
1998;5:301–5.
[25] Burton SG, Dorrington RA. Hydantoin-hydrolysing enzymes for the enantiose-
lective production of amino acids: new insights and applications. Tetrahedron:
Asymmetry 2004;15:2737–41.
[26] Liu Y, Li Q, Hu X, Yang J. Construction and co-expression of polycistronic plasmid
encoding d-hydantoinase and d-carbamoylase for the production of d-amino
acids. Enzyme Microb Technol 2008;42:589–93.
[27] Martínez-Gómez AI, Martínez-Rodríguez S, Clemente-Jiménez JM, Pozo-
Dengra J, Rodríguez-Vico F, Las Heras-Vázquez FJ. Recombinant polycistronic
structure of hydantoinase process genes in Escherichia coli for the production
of optically pure d-amino acids. Appl Environ Microbiol 2007;73:1525–31.
[28] Martínez-Rodríguez S, Las Heras-Vázquez FJ, Clemente-Jiménez JM,
Mingorance-Cazorla L, Rodríguez-Vico F. Complete conversion of d,l-5-
monosubstituted hydantoins with a low velocity of chemical racemization
into d-amino acids using whole cells of recombinant Escherichia coli. Biotechnol
Prog 2002;18:1201–6.
[29] Park J-H, Kim G-J, Kim H-S. Production of d-amino acid using whole cells of
recombinant Escherichia coli with separately and coexpressed d-hydantoinase
and N-carbamoylase. Biotechnol Prog 2000;16:564–70.
[30] Syldatk C, May O, Altenbuchner J, Mattes R, Siemann M. Microbial
hydantoinases—industrial enzymes from the origin of life. Appl Microbiol
Biotechnol 1999;51:293–309.
[47] Stumpp T, Wilms B, Altenbuchner J. Ein neues l-rhamnose-induzierbares
expressions system für Escherichia coli. Biospektrum 2000;6:33–6.
[48] Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J, Pietzsch M. Cloning,
nucleotide sequence and expression of a new l-n-carbamoylase gene from
Arthrobacter aurescens DSM 3747 in E. coli. J Biotechnol 1999;68:101–13.
[49] Bednarski MD, Chenault HK, Simon ES, Whitesides GM. Membrane-enclosed
enzymatic catalysis (MEEC): a useful, practical new method for the manipula-
tion of enzymes in organic synthesis. J Am Chem Soc 1987;109:1283–5.
[50] Faber K. Immobilization. In: Biotransformations in organic chemistry: a text-
book. 6th ed. Berlin Heidelberg, Germany: Springer; 2011. p. 356–367.
[51] Reist M, Carrupt P-A, Testa B, Lebmann S, Hansen JJ. Kinetics and mechanisms of
racemization: 5-substituted hydantoins (=imidazolidine-2,4-diones) as mod-
els of chiral drugs. Helv Chim Acta 1996;79:767–78.
[52] Argyrou A, Washabaugh MW. Proton transfer from the C5-proR/proS positions
of l-dihydroorotate: general-base catalysis, isotope effects, and internal return.
J Am Chem Soc 1999;121:12054–62.
[53] Martínez-Rodríguez S, Encinar JA, Hurtado-Gómez E, Prieto J, Clemente-
Jiménez JM, Las Heras-Vázquez FJ, et al. Metal-triggered changes in the stability
and secondary structure of a tetrameric dihydropyrimidinase: a biophysical
characterization. Biophys Chem 2009;139:42–52.
[54] Monti D, Ferrandi EE, Zanellato I, Hua L, Polentini F, Carrea G, et al. One-
pot multienzymatic synthesis of 12-ketoursodeoxycholic acid: subtle cofactor
specificities rule the reaction equilibria of five biocatalysts working in a row.
Adv Synth Catal 2009;351:1303–11.
[55] Pataj Z, Ilisz I, Berkecz R, Misicka A, Tymecka D, Fülöp F, et al. Comparison of
performance of Chirobiotic T, T2 and TAG columns in the separation of beta2-
and beta3-homoamino acids. J Sep Sci 2008;31:3688–97.
[31] Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J. Development of an
Escherichia coli whole cell biocatalyst for the production of L-amino acids. J
Biotechnol 2001;86:19–30.