M. Fazekas et al. / Tetrahedron Letters 49 (2008) 2236–2239
2239
Acknowledgement
Ph
R1
+
2
This work was generously supported by the Science
Foundation Ireland (Research Professorship SFI 04/RP1/
B482 and SFI 06/RFP/CHO044).
Ph
11a R1 = H
1
Br
3a R1 = 4-nitrophenyl
Br
3
2
References and notes
Ph
1
. (a) Nyman, E. S.; Hynninen, P. H. J. Photochem. Photobiol., B 2004,
73, 1–28; (b) El-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza, F. J.
Photochem. Photobiol., C 2004, 5, 79–104; (c) Senge, M. O.; Fazekas,
M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni
Mhuircheartaigh, E. M. Adv. Mater. 2007, 19, 2737–2774.
R1
Ph
3
3
3a R1 = H 16%
2
. (a) Dogutan, D. K.; Zaidi, S. H. H.; Thamyongkit, P.; Lindsey, J. S.
J. Org. Chem. 2007, 72, 7701–7714; (b) Sharman, W. M.; Van Lier, J.
E. J. Porphyrins Phthalocyanines 2000, 4, 441–453; (c) Jun-ichiro, S. J.
Porphyrins Phthalocyanines 2004, 8, 93–102; (d) Senge, M. O. Acc.
Chem. Res. 2005, 38, 733–743.
3b R1 = 4-nitrophenyl 18%
Ph
Ph
R1
3. (a) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Chem.
Rev. 2001, 101, 2751–2796; (b) Iengo, E.; Zangrando, E.; Alessio, E.
Acc. Chem. Res. 2006, 39, 841–851.
Scheme 5. Synthesis of porphyrin trimers with rectangular geometry.
Reagents and conditions: AsPh (2 equiv), Pd (dba) (0.1 equiv), THF
20 mL), TEA (4 mL), 65 °C, nitrogen.
3
2
3
4
. (a) Paolesse, R.; Pandey, R. K.; Forsyth, T. P.; Jaquinod, L.;
Gerzevske, K. R.; Nurco, D. J.; Senge, M. O.; Licoccia, S.; Boschi, T.;
Smith, K. M. J. Am. Chem. Soc. 1996, 118, 3869–3882; (b) Vicente,
M. G. H.; Jaquinod, L.; Smith, K. M. Chem. Commun. 1999, 1771–
(
1
782.
. (a) Wiehe, A.; Ryppa, C.; Senge, M. O. Org. Lett. 2002, 4, 3807–3809;
b) Hatscher, S.; Senge, M. O. Tetrahedron Lett. 2003, 44, 157–160; (c)
Ryppa, C.; Senge, M. O.; Hatscher, S. S.; Kleinpeter, E.; Wacker, P.;
Schilde, U.; Wiehe, A. Chem. Eur. J. 2005, 11, 3427–3442; (d) Wiehe,
A.; Shaker, Y. M.; Brandt, J. C.; Mebs, S.; Senge, M. O. Tetrahedron
Pd-catalyzed coupling reaction with 2 equiv of precursors
5
1
1a and 13a, respectively, to yield dimers 33 (Scheme 5).
Similar to trimer 31, the absorption spectrum of the
(
rectangular trimers 33a,b exhibited a split Soret band and
a bathochromic shift of the Q bands due to the electronic
coupling of the subunits. The optical limiting (OL) proper-
ties of the multiporphyrins were investigated using the
open-aperture z-scan technique with 6 ns laser pulses at
2
005, 61, 5535–5564.
6
7
. Callot, H. J. Tetrahedron Lett. 1973, 50, 4890–4987.
. Senge, M. O.; Kalisch, W. W.; Bischoff, I. Chem. Eur. J. 2000, 6,
2721–2738.
1
2
8
. (a) Feng, X.; Senge, M. O. J. Chem. Soc., Perkin Trans. 1 2001, 1030–
5
32 nm. All the compounds examined exhibited reverse
1
038; (b) Baolu, S.; Boyle, W. R. J. Chem. Soc., Perkin Trans. 1 2002,
saturable absorption (RSA) under incident focal intensities
ranging from about 0.05 to approximately 0.10 GW cm
Preliminary studies showed the rectangular trimer 33a to
possess outstanding OL properties in comparison to the
linear compound 31 with the same number of porphyrin
units. The OL performances of the dimers examined (22,
1
397–1400; (c) Yeung, M.; Ng, A. C. H.; Drew, M. G. B.; Vorpagel,
À2
.
E.; Breitung, E. M.; McMahon, R. J.; Ng, D. K. P. J. Org. Chem.
998, 63, 7143–7150; (d) Boyle, R.; Johnson, C.K.; Dolphin, D. J.
1
Chem. Soc., Chem. Commun. 1995, 527–528; (e) Shediac, R.; Gray, M.
H. B.; Uyeda, T. H.; Johnson, R. C.; Hupp, J. T.; Anjiolillo, P. J.;
Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017–7033; (f) Berrzin,
D. B. Russ. J. Gen. Chem. 2005, 75, 854–858; (g) Compounds 1a,b, 2a,
2
3, 25a,b, 29 and 30) were better or comparable to the
8a,c–e
3
a,b, 4b and 5a were prepared according to the literature.
linear trimer 31 but did not exceed those of 33a.
9
. Initial studies showed that 17 can be converted to the 5-(1-ethyl-
propyl)-10,15,20-tri(2-trimethylsilylethynyl)porphyrin in 49% yield,
which subsequently was deprotected to 5,10,15-triethynyl-(20-(1-
ethylpropyl)porphyrin in 63% yield.
Currently, we are optimizing the reactions described
herein. The preliminary results indicate that judicious
choice of the starting materials and appropriate planning
of the sequence of coupling and functionalization reactions
allow the rapid generation of a variety of unsymmetrical
multichromophoric systems or precursors with enhanced
optical properties. The synthetic strategies are equally
amenable for the construction of amphiphilic porphyrin
dimers and trimers for use in photodynamic therapy and
will be useful precursors for the preparation of larger,
superstructured systems.
1
0. (a) Sugiura, K.; Fujimoto, Y.; Sakata, Y. Chem. Commun. 2000,
105–1106; (b) Kato, A.; Sugiura, K.; Miyasaka, H.; Tanaka, H.;
1
Kawai, T.; Sugimoto, M.; Yamashita, M. Chem. Lett. 2004, 33, 578–
579.
1
1. Notaras, E. G. A.; Fazekas, M.; Doyle, J. J.; Blau, W. J.; Senge, M.
O. Chem. Commun. 2007, 2166–2168.
1
2. z-Scans: Q-switched Nd:YAG laser with a pulse repetition rate of
À1
1
0 Hz; samples dissolved in DMF; c = 0.01 g L . The beam was
spatially filtered to remove the higher order modes and tightly focused
with a 9 cm focal length lens as described in Ref. 11.