G. Luo et al. / Tetrahedron Letters 49 (2008) 296–299
299
product 6h in 63% yield (Scheme 4).15 However, though
stable and identifiable, the formation of methanol semi-
aminals was not always achievable. For example, the
dianilino-aminal was found to be the major product in
the case of simple aniline.
Parker, M.; Peishoff, C. E.; Rhodes, G.; Ross, S.; Shu, A.;
Simpson, R.; Takata, D.; Yellin, T. O.; Uzsinskas, I.;
Venslavsky, J. W.; Yuan, C.-K.; Huffman, W. F. J. Med.
Chem. 1996, 39, 4867–4870.
. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem.
Soc. 1998, 120, 12459–12467.
5
6
7
. Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583.
. Clement, J.-B.; Hayes, J. F.; Sheldrake, H. M.; Sheldrake,
P. W.; Wells, A. S. Synlett 2001, 1423–1427.
In summary, a very short and facile racemic synthesis
has been achieved for N-arylated aspartates through
an imine or semi-aminal intermediate in one-pot. More
critically, the two acid groups were orthogonally
protected as ethyl and tert-butyl esters, which could
be deprotected under basic and acid conditions,
respectively.
8. Lu, Z.; Twieg, R. J. Tetrahedron Lett. 2005, 46, 2997–
3001.
9. Lam, P. Y. S.; Bonne, D.; Vincent, G.; Clark, C. G.;
Combs, A. P. Tetrahedron Lett. 2003, 44, 1691–1694.
0. For a review; see: Erdik, E. Organozinc Reagents in
Organic Synthesis; CRC Press LLC, 1996, pp 207–236.
1. Manhas, M. S.; Ghosh, M.; Bose, A. K. J. Org. Chem.
1
1
1
1
1
990, 55, 575–580.
Acknowledgment
2. tert-Butyl 2-bromozinc acetate (0.50 M in THF) was
commercially available from Reike Metals, Inc.
3. Conditions for the formation of imines: Method A:
Approximately 1.1:1 ratio of ethyl glyoxylate (50% toluene
The authors are grateful to Dr. John E. Macor for his
constant support and encouragement.
˚
solution) and 5 (4.0 mmol) in CH Cl (10 ml) with 4 A
2
2
M.S. till completion, then filtered and concentrated;
Method B: Approximately 1:1 ratio of ethyl glyoxylate
Supplementary data
(
(
50% toluene solution) and 5 (2.0 mmol) in benzene
20 ml) was refluxed for 18 h (or till completion) followed
Supplementary data (analytical data including copies of
H and C NMR spectra for compounds 5f, 6a–6h, 7
1
13
by concentration; Method C: Approximately 1.1:1 ratio of
ethyl glyoxylate (50% toluene solution) and 5 (2.0 mmol)
in THF (6 ml) with anhydrous MgSO4 till completion,
then filtered and concentrated.
1
4. General procedures for the synthesis of 6: Intermediate
imine (2.0 mmol) was redissolved in anhydrous THF
(8 ml) and cooled at 0 °C or À20 °C under nitrogen. 1.1 or
References and notes
2
.2 (for entries 4, 5 and 7) equiv of tert-butyl 2-bromozinc
1
. Prince, W.; Moore, K.; Cass, L.; Dallow, N.; Jones, A.;
Kleim, J.-P.; Mutch, P.; St. Clair, M. Antiviral Res. 1999,
acetate (0.50 M in THF) was quickly added to the stirring
solution of 6. (A reverse addition could also be utilized).
The reaction was usually complete within 2 h. After
4
1, 2 (Abs. 49).
2
. (a) Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.;
Brown, K. K.; Cobb, J. E.; Collins, J. L.; Harrington, W.
W., Jr.; Hashim, M. A.; Hull-Ryde, E. A.; Kaldor, I.;
Kliewer, S. A.; Lake, D. H.; Leesnitzer, L. M.; Lehmann,
J. M.; Lenhard, J. M.; Orband-Miller, L. A.; Miller, J. F.;
Mook, R. A., Jr.; Noble, S. A.; Oliver, W., Jr.; Parks, D.
J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. J. Med.
Chem. 1998, 41, 5020–5036; (b) Liu, K. G.; Smith, J. S.;
Ayscue, A. H.; Henke, B. R.; Lambert, M. H.; Leesnitzer,
L. M.; Plunket, K. D.; Willson, T. M.; Sternbach, D. D.
Bioorg. Med. Chem. Lett. 2001, 11, 2385–2388.
quenching with NH
with EtOAc three times. The combined organic layers
were washed with brine, dried (Na SO ), and concentrated
in vacuo. The residue was purified by flash column
chromatography to afford 6. All analytical data for the
new compounds were documented in Supplementary data.
4
Cl solution, the mixture was extracted
2
4
15. See Supplementary data.
16. (a) Ku, T. W.; Ali, F. E.; Barton, L. S.; Bean, J. W.;
Bondinell, W. E.; Burgess, J. L.; Callahan, J. F.; Calvo, R.
R.; Chen, L.; Eggleston, D. S.; Gleason, J. G.; Huffman,
W. F.; Hwang, S. M.; Jakas, D. R.; Karash, C. B.;
Keenan, R. M.; Kopple, K. D.; Miller, W. H.; Newlander,
K. A.; Nichols, A.; Parker, M. F.; Peishoff, C. E.;
Samanen, J. M.; Uzinskas, I.; Venslavsky, J. W. J. Am.
Chem. Soc. 1993, 115, 8861–8862; (b) Andews, I. P.;
Atkins, R. J.; Badham, N. F.; Bellingham, R. K.; Breen,
G. F.; Carey, J. S.; Etridge, S. K.; Hayes, J. F.; Hussain,
N.; Morgan, D. O.; Share, A. C.; Smith, S. A. C.;
Walsgrove, T. C.; Wells, A. S. Tetrahedron Lett. 2001, 42,
4915–4917.
3
. Juraszyk, H.; Dorsch, D.; Mederski, W.; Tsaklakidis, C.;
Barnes, C.; Gleitz, J. W.O. Patent 0230880, 2002.
4
. (a) Miller, W. H.; Ku, T. W.; Ali, F. E.; Bondinell, W. E.;
Calvo, R. R.; Davis, L. D.; Erhard, K. F.; Hall, L. B.;
Huffman, W. F.; Keenan, R. M.; Kwon, C.; Newlander,
K. A.; Ross, S. T.; Samanen, J. M.; Takata, T. D.; Yuan,
C. Tetrahedron Lett. 1995, 36, 9433–9436; (b) Samanen, J.
M.; Ali, F. E.; Barton, L. S.; Bondinell, W. E.; Burgess, J.
L.; Callahan, J. F.; Calvo, R. R.; Chen, W.; Chen, L.;
Erhard, K.; Feuerstein, G.; Heys, R.; Hwang, S.-M.;
Jakas, D. R.; Keenan, R. M.; Ku, T. W.; Kwon, C.; Lee,
C.-P.; Miller, W. H.; Newlander, K. A.; Nichols, A.;
17. Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Wang, B.;
Sundeen, J. E.; Barrish, J. C. J. Org. Chem. 2004, 69,
977–979.