10.1002/hlca.202000184
Helvetica Chimica Acta
HELVETICA
[23]
[24]
[25]
Y. Lin, B. Li, Z. Feng, Y. A. Kim, M. Endo, D. S. Su, ‘Efficient Metal-
Free Catalytic Reaction Pathway for Selective Oxidation of
Substituted Phenols’, ACS Catal. 2015, 5, 5921-5926.
J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, ‘Photocatalytic
reduction of CO2 by graphitic carbon nitride polymers derived
from urea and barbituric acid’, Appl. Catal., B 2015, 179, 1-8.
S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun, C. Cao, W. Song,
‘Nitrogen, Phosphorus, and Sulfur Co-Doped Hollow Carbon
Shell as Superior Metal-Free Catalyst for Selective Oxidation of
Aromatic Alkanes’, Angew. Chem., Int. Ed. 2016, 55, 4016-4020.
F. Hu, M. Patel, F. Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H.
He, M. Szostak, ‘Graphene-Catalyzed Direct Friedel–Crafts
Alkylation Reactions: Mechanism, Selectivity, and Synthetic
Utility’, J. Am. Chem. Soc. 2015, 137, 14473-14480.
J. Gläsel, J. Diao, Z. Feng, M. Hilgart, T. Wolker, D. S. Su, B. J. M.
Etzold, ‘Mesoporous and Graphitic Carbide-Derived Carbons as
Selective and Stable Catalysts for the Dehydrogenation
Reaction’, Chem. Mater. 2015, 27, 5719-5725.
characterization of the polymeric catalyst. EM conceived the project and
supervised the research. FU, DW and EM wrote the manuscript.
References
[1]
M. Saurat, S. Bringezu, ‘Platinum group metal flows of Europe,
part 1: Global supply, use in industry, and shifting of
environmental impacts’, J. Ind. Ecol. 2008, 12, 754-767.
M. Saurat, S. Bringezu, ‘Platinum Group Metal Flows of Europe,
Part II: Exploring the Technological and Institutional Potential
for Reducing Environmental Impacts’, J. Ind. Ecol. 2009, 13, 406-
421.
[2]
[26]
[27]
[3]
S. J. Fallon, J. C. White, M. T. McCulloch, ‘Porites corals as
recorders of mining and environmental impacts: Misima Island,
Papua New Guinea’, Geochim. Cosmochim. Acta 2002, 66, 45-
62.
[4]
[5]
[6]
[7]
[8]
T. Norgate, N. Haque, ‘Energy and greenhouse gas impacts of
mining and mineral processing operations’, J. Cleaner Prod.
2010, 18, 266-274.
[28]
[29]
M.-M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del
Monte, J. H. Clark, M. J. MacLachlan, ‘Sustainable carbon
materials’, Chem. Soc. Rev. 2015, 44, 250-290.
K. S. Egorova, V. P. Ananikov, ‘Which metals are green for
catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh,
and Au salts’, Angew. Chem., Int. Ed. 2016, 55, 12150-12162.
D. S. Su, J. Zhang, B. Frank, A. Thomas, X. C. Wang, J.
Paraknowitsch, R. Schlogl, ‘Metal-Free Heterogeneous Catalysis
for Sustainable Chemistry’, ChemSusChem 2010, 3, 169-180.
S. Ahmad, E. Guillen, L. Kavan, M. Gratzel, M. K. Nazeeruddin,
‘Metal free sensitizer and catalyst for dye sensitized solar cells’,
Energy Environ. Sci. 2013, 6, 3439-3466.
M. Fevre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, ‘N-
Heterocyclic carbenes (NHCs) as organocatalysts and structural
components in metal-free polymer synthesis’, Chem. Soc. Rev.
2013, 42, 2142-2172.
S. Majeed, J. M. Zhao, L. Zhang, S. Anjum, Z. Y. Liu, G. B. Xu,
‘Synthesis and electrochemical applications of nitrogen-doped
carbon nanomaterials’, Nanotechnol. Rev. 2013, 2, 615-635.
W. Kicinski, M. Szala, M. Bystrzejewski, ‘Sulfur-doped porous
carbons: Synthesis and applications’, Carbon 2014, 68, 1-32.
X. K. Kong, C. L. Chen, Q. W. Chen, ‘Doped graphene for metal-
free catalysis’, Chem. Soc. Rev. 2014, 43, 2841-2857.
X. W. Wang, G. Z. Sun, P. Routh, D. H. Kim, W. Huang, P. Chen,
‘Heteroatom-doped graphene materials: syntheses, properties
and applications’, Chem. Soc. Rev. 2014, 43, 7067-7098.
J. J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ‘Heteroatom-Doped
Graphene-Based Materials for Energy-Relevant Electrocatalytic
Processes’, ACS Catal. 2015, 5, 5207-5234.
S. Agnoli, M. Favaro, ‘Doping graphene with boron: a review of
synthesis methods, physicochemical characterization, and
emerging applications’, J. Mater. Chem. A 2016, 4, 5002-5025.
M. A. Patel, F. Luo, M. R. Khoshi, E. Rabie, Q. Zhang, C. R. Flach,
R. Mendelsohn, E. Garfunkel, M. Szostak, H. He, ‘P-Doped
Porous Carbon as Metal Free Catalysts for Selective Aerobic
Oxidation with an Unexpected Mechanism’, ACS Nano 2016, 10,
2305-2315.
Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. S. Su, J. Wang, X. Bao,
D. Ma, ‘Nitrogen-Doped sp2-Hybridized Carbon as a Superior
Catalyst for Selective Oxidation’, Angew. Chem., Int. Ed. 2013,
52, 2109-2113.
Q. L. Wei, X. Tong, G. X. Zhang, J. L. Qiao, Q. J. Gong, S. H. Sun,
‘Nitrogen-Doped Carbon Nanotube and Graphene Materials for
Oxygen Reduction Reactions’, Catalysts 2015, 5, 1574-1602.
O. Y. Podyacheva, Z. R. Ismagilov, ‘Nitrogen-doped carbon
nanomaterials: To the mechanism of growth, electrical
conductivity and application in catalysis’, Catal. Today 2015,
249, 12-22.
M. M. Li, F. Xu, H. R. Li, Y. Wang, ‘Nitrogen-doped porous
carbon materials: promising catalysts or catalyst supports for
heterogeneous hydrogenation and oxidation’, Catal. Sci.
Technol. 2016, 6, 3670-3693.
M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf, K. S. Kim, ‘Highly
Selective and Stable Carbon Dioxide Uptake in Polyindole-
Derived Microporous Carbon Materials’, Environ. Sci. Technol.
2013, 47, 5467-5473.
K. Shen, X. Chen, J. Chen, Y. Li, ‘Development of MOF-Derived
Carbon-Based Nanomaterials for Efficient Catalysis’, ACS Catal.
2016, 6, 5887-5903.
D. Wang, E. Mejia, ‘POSS-Based Nitrogen-Doped Hierarchically
Porous Carbon as Metal-Free Oxidation Catalyst’,
[30]
[31]
[32]
[33]
[34]
[35]
[9]
S. Wertz, A. Studer, ‘Nitroxide-catalyzed transition-metal-free
aerobic oxidation processes’, Green Chem. 2013, 15, 3116-3134.
X. X. Zou, Y. Zhang, ‘Noble metal-free hydrogen evolution
catalysts for water splitting’, Chem. Soc. Rev. 2015, 44, 5148-
5180.
[10]
[11]
[12]
[13]
[14]
Y. Nie, L. Li, Z. D. Wei, ‘Recent advancements in Pt and Pt-free
catalysts for oxygen reduction reaction’, Chem. Soc. Rev. 2015,
44, 2168-2201.
M. H. Shao, Q. W. Chang, J. P. Dodelet, R. Chenitz, ‘Recent
Advances in Electrocatalysts for Oxygen Reduction Reaction’,
Chem. Rev. 2016, 116, 3594-3657.
Y. Xu, M. Kraft, R. Xu, ‘Metal-free carbonaceous electrocatalysts
and photocatalysts for water splitting’, Chem. Soc. Rev. 2016,
45, 3039-3052.
M. Zhou, H. L. Wang, S. J. Guo, ‘Towards high-efficiency
nanoelectrocatalysts for oxygen reduction through engineering
advanced carbon nanomaterials’, Chem. Soc. Rev. 2016, 45,
1273-1307.
[36]
[37]
[38]
[15]
[16]
C. C. Huang, C. Li, G. Q. Shi, ‘Graphene based catalysts’, Energy
Environ. Sci. 2012, 5, 8848-8868.
D. S. Su, S. Perathoner, G. Centi, ‘Nanocarbons for the
Development of Advanced Catalysts’, Chem. Rev. 2013, 113,
5782-5816.
[39]
[40]
[17]
[18]
S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia,
‘Carbocatalysis by Graphene-Based Materials’, Chem. Rev. 2014,
114, 6179-6212.
P. Tang, G. Hu, M. Li, D. Ma, ‘Graphene-Based Metal-Free
Catalysts for Catalytic Reactions in the Liquid Phase’, ACS Catal.
2016, 6, 6948-6958.
[41]
[42]
[43]
[44]
[19]
[20]
[21]
[22]
D. Su, G. Wen, S. Wu, F. Peng, R. Schloegl, ‘Carbocatalysts in
Liquid Phase’, Angew. Chem., Int. Ed. 2016, 56, 936-964.
X. Liu, L. Dai, ‘Carbon-based metal-free catalysts’, Nat. Rev.
Mater. 2016, 1, 16064.
X. B. Fan, G. L. Zhang, F. B. Zhang, ‘Multiple roles of graphene in
heterogeneous catalysis’, Chem. Soc. Rev. 2015, 44, 3023-3035.
B. Chen, L. Wang, S. Gao, ‘Recent Advances in Aerobic Oxidation
of Alcohols and Amines to Imines’, ACS Catal. 2015, 5, 5851-
5876.
ChemistrySelect 2017, 2, 3381-3387.
N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, ‘Trends
and challenges for microporous polymers’, Chem. Soc. Rev.
2017, 46, 3302-3321.
T. L. Church, A. B. Jasso-Salcedo, F. Bjoernerbaeck, N. Hedin,
‘Sustainability of microporous polymers and their applications’,
Sci. China: Chem. 2017, 60, 1033-1055.
10
This article is protected by copyright. All rights reserved.