642 Inorg. Chem. 2010, 49, 642–645
DOI: 10.1021/ic901942p
An Efficient, Selective, and Reducing Agent-Free Copper Catalyst for the
Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins
ꢀ
~
ꢀ
ꢀ
´
´
Jose Marıa Munoz-Molina, Tomas R. Belderraın,* and Pedro J. Perez*
ꢀ
ꢀ
´
Laboratorio de Catalisis Homogenea, Departamento de Quımica y Ciencia de los Materiales, Unidad Asociada
al CSIC, Campus de El Carmen, Universidad de Huelva, 21007-Huelva, Spain
Received October 2, 2009
Efficient and selective ATRA reactions of CCl4, CBr4, TsCl (Ts = tosyl), or Cl3CCO2Et with activated olefins (styrene,
methyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate) using the TptBuCu(NCMe) complex as a catalyst
have been achieved in the absence of any reductant and with low catalyst loadings.
Introduction
(Scheme 1a).7 The commonly accepted mechanism for this
radical process is shown in Scheme 1b. The metal complex
reacts with an R-X (X = halide) bond to generate the
The transition-metal-catalyzed Kharasch reaction,1 so-called
atom-transfer radical addition (ATRA),2 constitutes a pro-
mising synthetic tool in organic synthesis. Several metals such
as Fe,3 Ru,4 Ni,5 or Cu6 are known to promote this trans-
formation either in the inter- or intramolecular version
radical R and a metal halide complex. The former radical
3
species may react with the olefin to give radical R0 (addition
step) or, alternatively, with another radical ( R or R0) in
3
3
nonproductive side reactions (termination steps). Following
the addition, the resulting radical recovers the halide from the
metal in the deactivation step, the metal center being reduced
to the initial oxidation state to be ready to restart the catalytic
*To whom correspondence should be addressed. Tel.: 34959219956.
Fax: 34959219942. E-mail: perez@dqcm.uhu.es (P.J.P.), trodri@dqcm.uhu.es
(T.R.B.).
(1) Kharasch, M. S.; Engelmann, H.; Mayo, F. R. J. Org. Chem. 1938, 2,
288.
(2) (a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
(b) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. J. Am. Chem. Soc. 1945, 67, 1626.
(3) (a) De Malde, M.; Minisci, F.; Pallini, U.; Volterra, E.; Quilico, A.
Chim. Ind. 1956, 38, 371. (b) Minisci, F.; Galli, R. Chim. Ind. 1963, 45, 1400.
(4) (a) Quebatte, L.; Solari, E.; Scopelliti, R.; Severin, K. Organometallics
2005, 24, 1404. (b) Quebatte, L.; Scopelliti, R.; Severin, K. Angew. Chem., Int.
Ed. 2004, 43, 1520. (c) Tutusaus, O.; Delfosse, S.; Demonceau, A.; Noels, A. F.;
cycle. It is worth mentioning that radical R0 can also react
3
with another olefin molecule to start a polymerization route.
The main drawback of the metal-catalyzed ATRA reactions
is the formation of the side products, which not only decrease
the yield in the desired addition products but also induce the
accumulation of Mnþ1, affecting the [Mnþ]/[Mnþ1] ratio and,
finally, bringing the catalytic reaction to the end. A methodol-
ogy envisaged to solve this problem was introduced by Severin
and co-workers with Ru-based catalysts and consisted of the
addition of a reducing agent (magnesium powder) to con-
tinuously regenerate the lower oxidation state of the metal at
room temperature ([LmMnþ] in Scheme 1b).8 The main
advantage of this strategy is that magnesium does not generate
free radicals; however, the total metal concentration increases
in the system.9 Also, the groups of Severin10 and Pintauer11
~
~
Vinas, C.; Teixidor, F. Tetrahedron Lett. 2003, 44, 8421. (d) Tutusaus, O.; Vinas,
~
C.; Nꢀunez, R.; Teixidor, F.; Demonceau, A.; Delfosse, S.; Noels, A. F.; Mata, I.;
Molins, E. J. Am. Chem. Soc. 2003, 125, 11830. (e) Opstal, T.; Verpoort, F. New
J. Chem. 2003, 27, 257. (f) De Clercq, B.; Verpoort, F. J. Organomet. Chem.
2003, 672, 11. (g) Simal, F.; Wlodarczak, L.; Demonceau, A.; Noels, A. F. Eur. J.
Org. Chem. 2001, 14, 2689. (h) Tallarico, J. A.; Malnick, L. M.; Snapper, M. L.
J. Org. Chem. 1999, 64, 344. (i) Simal, F.; Wlodarczak, L.; Demonceau, A.;
Noels, A. F. Tetrahedron Lett. 2000, 41, 6071.
(5) (a) Gossage, R. A.; van de Kuil, L. A.; van Koten, G. Acc. Chem. Res.
1998, 31, 423. (b) van de Kuil, L. A.; Grove, D. M.; Gossage, R. A.; Zwikker,
J. W.; Jenneskens, L. W.; Drenth, W.; van Koten, G. Organometallics 1997, 16,
4985. (c) Kleij, A. W.; Gossage, R. A.; Klein Gebbink, R. J. M.; Brinkmann, N.;
Reijerse, E. J.; Kragl, U.; Lutz, M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc.
2000, 122, 12112.
(6) (a) Hajek, M.; Kotora, M.; Davis, R.; Fischer, C.; Joshu, W. A. C.
Collect. Czech. Chem. Commun. 1996, 61, 774. (b) Davies, R.; Stephens, K.;
Hajek, M. J. Mol. Catal. A 1994, 92, 269. (c) Villemin, D.; Sauvaget, F.; Hajek,
M. Tetrahedron Lett. 1994, 35, 3537. (d) Kotora, M.; Hajek, M. J. Fluorine
Chem. 1993, 64, 101. (e) Kotora, M.; Hajek, M.; Dobler, C. Collect. Czech.
Chem. Commun. 1992, 57, 2622. (f) Kotora, M.; Hajek, M. J. Mol. Catal. A
1992, 77, 51. (g) Hajek, M.; Silhavy, P. Collect. Czech. Chem. Commun. 1980,
48, 1710. (h) Hajek, M.; Silhavy, P.; Malek, J. Collect. Czech. Chem. Commun.
(7) (a) Clark, A. J. Chem. Soc. Rev. 2002, 31, 1. (b) de Campo, F.;
Lastecoueres, D.; Verlhac, J.-B. J. Chem. Soc., Perkin Trans. 1 2000, 575.
~
ꢀ
(c) Munoz-Molina, J. M.; Belderraín, T. R.; Perez, P. J. Adv. Synth. Catal. 2008,
350, 2365. (d) Ricardo, C.; Pintauer, T. Chem. Commun. 2009, 3029.
(8) Thommes, K.; Icli, B.; Scopelliti, R.; Severin, K. Chem. Eur. J. 2007,
13, 6899.
(9) (a) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087.
(b) Pintauer, T.; Eckenhoff, W. T.; Ricardo, C.; Balili, M. N. C.; Biernesser, A. B.;
Noonan, S. J.; Taylor, M. J. W. Chem. Eur. J. 2009, 15, 38.
(10) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006, 128,
7440.
(11) (a) Eckenhoff, W. T.; Pintauer, T. Inorg. Chem. 2007, 46, 5844.
(b) Eckenhoff, W. T.; Garrity, S. T.; Pintauer, T. Eur. J. Inorg. Chem. 2008, 563.
(c) Nicole, M.; Balili, C.; Pintauer, T. Inorg. Chem. 2009, 48, 18.
~
1980, 45, 3502. (i) Munoz-Molina, J. M.; Caballero, A.; Díaz-Requejo, M. M.;
Trofimenko, S.; Belderraín, T. R.; Perez, P. J. Inorg. Chem. 2007, 46, 7725.
ꢀ
r
pubs.acs.org/IC
Published on Web 12/11/2009
2009 American Chemical Society