4
23. S.K. De, R.A. Gibbs, Tetrahedron Lett. 45 (2004) 7407–7408.
24. S.K. De, Synth. Commun. 35 (2005) 653–656.
25. M. a. Pasha, H.M. Nanjundaswamy, V.P. Jayashankara, Synth. Commun.
37 (2007) 4371–4380.
26. Z.L. Shen, S.J. Ji, T.P. Loh, Tetrahedron 64 (2008) 8159–8163.
27. B.C. Ranu, S.S. Dey, A. Hajra, Tetrahedron 58 (2002) 2529–2532.
28. A. Majhi, S.S. Kim, S.T. Kadam, Tetrahedron 64 (2008) 5509–5514.
29. M. Narasimhulu, T.S. Reddy, K.C. Mahesh, S.M. Reddy, A.V. Reddy, Y.
Venkateswarlu, J. Mol. Catal. A Chem. 264 (2007) 288–292.
30. L. Royer, S.K. De, R.A. Gibbs, Tetrahedron Lett. 46 (2005) 4595–4597.
31. M. Majid, Chin. J. Chem. 28 (2010) 480–482.
32. C. Reddy, M. Raghu, Indian J. Chem. Sec. B 47 (2008) 1572–1577.
33. J.S. Yadav, B. V. Subba Reddy, B. Eeshwaraiah, M. Srinivas,
Tetrahedron 60 (2004) 1767–1771.
34. S. Kobayashi, S. Nagayama, T. Busujima, Tetrahedron Lett. 37 (1996)
9221-9224.
35. E. Rafiee, S. Rashidzadeh, A. Azad, J. Mol. Catal. A Chem. 261 (2007)
49–52.
Fig. 1. Reusability of the catalyst.
36. A. Shaabani, A. Maleki, Appl. Catal. A Gen. 331 (2007) 149–151.
37. E. Rafiee, S. Rashidzadeh, M. Joshaghani, H. Chalabeh, K. Afza, Synth.
Commun. 38 (2008) 2741–2747.
Conclusion
38. B. Karimi, D. Zareyee, J. Mater. Chem. 19 (2009) 8665–8670.
39. M.Z. Kassaee, H. Masrouri, F. Movahedi, Appl. Catal. A Gen. 395
(2011) 28–33.
In conclusion, the present procedure is a rapid, efficient and
green method for synthesis of α-aminonitriles via Strecker
reaction using various aldehydes/ketones, amines, and TMSCN
under optimized conditions. Excellent yields, simple
experimental procedure, easy workup procedure, shorter reaction
time, recyclability of the catalyst and environmentally benign
reaction conditions are the key features of this procedure.
Moreover, this protocol has the ability to tolerate a wide variety
of substituents.
40. H.A. Oskooie, M.M. Heravi, A. Sadnia, F. Jannati, F.K. Behbahani,
Monatsh. Chem. 139 (2008) 27–29.
41. K. Niknam, D. Saberi, M.N. Sefat, Tetrahedron Lett. 51 (2010) 2959–
2962.
42. S.P. Pathare, K.G. Akamanchi, Tetrahedron Lett. 53 (2012) 871–875.
43. M.G. Dekamin, Z. Mokhtari, Tetrahedron 68 (2012) 922–930.
44. H. Ghafuri, A. Rashidizadeh, B. Ghorbani, M. Talebi, New J. Chem. 39
(2015) 4821–4829.
45. Z. Li, Y. Sun, X. Ren, P. Wei, Y. Shi, P. Ouyang, Synlett (2007) 803–
805.
Acknowledgements
46. A. Shaabani, A. Maleki, M.R. Soudi, H. Mofakham, Catal. Commun. 10
(2009) 945–949.
The authors are grateful to University Grants Commission
(UGC) for their financial support.
47. C.K. Khatri, D.S. Rekunge, G.U. Chaturbhuj, New J. Chem. 40 (2016)
10412–10417.
48. C.K. Khatri, V.B. Satalkar, G.U. Chaturbhuj, Tetrahedron Lett.58 (2017)
694–698.
Appendix A. Supplementary data
Supplementary data associated with this article can be found,
49. D.S. Rekunge, C.K. Khatri, G.U. Chaturbhuj, Tetrahedron Lett. 58
(2017) 1240–1244.
50. K.S. Indalkar, C.K. Khatri, G.U. Chaturbhuj, J. Chem. Sci. 129 (2017)
141–148.
References and notes
51. K.S. Indalkar, C.K. Khatri, G.U. Chaturbhuj, J. Chem. Sci. 129 (2017)
415-420.
1. D. Enders, J.P. Shilvock, Chem. Soc. Rev. 29 (2000) 359–373.
2. A.S. Paraskar, A. Sudalai, Tetrahedron Lett. 47 (2006) 5759–5762.
3. D. Chaturvedi, A. Chaturvedi, P. Dwivedi, N. Mishra, Synlett 24 (2012)
33–36.
52. C.K. Khatri, A. S. Mali, G.U. Chaturbhuj, Monatsh. Chem. DOI :
10.1007/s00706-017-1944-6
53 A. Shahrisa, S. Esmati, M.G. Nazari, J. Chem. Sci. 124 (2012) 927–931.
54 S. Chandrasekhar, K. Gopalaiah, Tetrahedron Lett. 43 (2002) 2455–2457.
55 O. Sivrikaya, A.I. Arol, Open Miner. Process. J. 3 (2010) 25-35.
56 General procedure for the synthesis of α-aminonitriles: To a mixture of
aldehyde/ketone, (2.0 mmol), amine (2.0 mmol), and trimethylsilyl
cyanide (2.0 mmol) was added sulfated polyborate (5 wt %). The reaction
was stirred at room temperature. The progress of the reaction was
monitored by TLC. After completion of the reaction, the mixture
quenched by water; Solid precipitated was filtered at vacuum pump,
washed with water, dried under vacuum and recrystallized from hexane
to afford the pure products.
4. C. Najera, J.M. Sansano, Chem. Rev. 107 (2007) 4584–4671.
5. S.J. Zuend, M.P. Coughlin, M.P. Lalonde, E.N. Jacobsen, Nature 461
(2009) 968–970.
6. L.M. Weinstock, P. Davis, B. Handelsman, R. Tull, Tetrahedron Lett. 7
(1966) 1263–1268.
7. S. Yolles, J.E. Eldridge, T.D. Leafe, J.H.R. Woodland, D.A. Blake, F.J.
Meyer, Adv. Exp. Med. Biol. 47 (1973) 177.
8. R. Durhaler, Tetrahedron 7 (1966) 1263–1268.
9. P.L. Feldman, M.K. James, M.F. Brackeen, J.M. Bilotta, S. V Schuster,
a P. Lahey, M.W. Lutz, M.R. Johnson, H.J. Leighton, J. Med. Chem. 34
(1991) 2202–2208.
10. P. Merino, E. Marqués-López, T. Tejero, R.P. Herrera, Tetrahedron 65
(2009) 1219–1234.
11. B.A.B. Prasad, A. Bisai, V.K. Singh, Tetrahedron Lett. 45 (2004) 9565–
9567.
12. S. Nakamura, N. Sato, M. Sugimoto, T. Toru, Tetrahedron Asymmetry
15 (2004) 1513–1516.
13. P. Vachal, E.N. Jacobsen, J. Am. Chem. Soc. 124 (2002) 10012-10014
14. S. Harusawa, Y. Hamada, T. Shioiri, Tetrahedron Lett. 20 (1979) 4663–
4666.
15. S. Sipos, I. Jablonkai, Tetrahedron Lett. 50 (2009) 1844–1846.
16. J.P. Abell, H. Yamamoto, J. Am. Chem. Soc. 131 (2009) 15118–15119.
17. Z. Li, Y. Ma, J. Xu, J. Shi, H. Cai, Tetrahedron Lett. 51 (2010) 3922–
3926.
18. P. Vongvilai, O. Ramstrom, J. Am. Chem. Soc. 131 (2009) 14419–
14425.
19. S. Kanta De, Synth. Commun. 35 (2005) 1577–1582.
20. S. Kobayashi, H. Ishitani, M. Ueno, Synlett (1997)115-116
21. A. Heydari, P. Fatemi, A.A. Alizadeh, Tetrahedron Lett. 39 (1998) 3049–
3050.
22. S.K. De, J. Mol. Catal. A Chem. 225 (2005) 169–171.