LETTER
Simple Bromination of Activated Arenes
281
fluoro and nitro groups. In particular, 2,3,5,6-tetrafluo- 2.5 h, etc.) in CH
Cl
(10 mL), the reaction was terminated by fil-
2
2
tration and the filtered resin was washed (15 × 3 mL) with CH Cl ,
rophenol (entry 8) was converted to the corresponding
bromo compound when 1.4 equivalents of IBX amide res-
in and TEAB were used. It means that our method was
very efficient and opened an opportunity to gain easy ac-
cess to a variety of bromoorganics. Furthermore, reaction
2
2
and then the filtrate and the washing solvent was combined and
evaporated. The product was dissolved again in EtOAc and purified
by short silica column (about 5 mL). The yield was measured by
GC-MS.
1
4
of soluble IBX amide with 2,6-dichlorophenol in DMSO
solution gave 4-bromo-2,6-dichlorophenol within 0.5
Acknowledgment
1
5
hours, which was confirmed by GC-MS. Although the
The authors wish to acknowledge the financial assistance provided
soluble IBX amide and the IBX amide resin showed sim- by the Nano Bioelectronics and Systems Research Center of Seoul
ilar reactivity, recovery of iodoso compound, reduced National University, Intelligent Microsystem Center, which carries
st
out some of the 21 century’s Frontier R&D Projects sponsored by
the Korea Ministry of Science & Technology and the Brain Korea
product of IBX amide, was troublesome in solution-phase
chemistry. Moreover, our method avoids the use of highly
polar organic solvents such as DMSO. Bromination stud-
ies with various arenes revealed that only activated arenes
2
1 Program supported by the Ministry of Education.
underwent bromination, and this to yield preferably the References
para brominated products, unless the para position were
(
(
1) Christophersen, C. Acta Chem. Scand. 1985, 39B, 515.
2) (a) Schmid, H. Helv. Chim. Acta 1946, 29, 1144.
b) Lambert, F. L.; Ellis, W. D.; Parry, R. J. J. Org. Chem.
blocked, in which case ortho bromination occurred.
However, in the case of the deactivated arenes, such as
benzene, nitrobenzene, benzaldehyde, toluene and naph-
thalene, no bromination occurred at all under the same
reaction conditions.
(
1965, 30, 304. (c) Konishi, H.; Aritomi, K.; Okano, T.; Kiji,
J. Bull. Chem. Soc. Jpn. 1989, 62, 591. (d) Bovonsombat,
P.; McNelis, E. Synthesis 1993, 237. (e) Vega, F.; Sasson,
Y.; Huddersman, K. Zeolites 1993, 13, 341. (f) Goldberg,
Y.; Alper, H. J. Mol. Catal. 1994, 88, 377. (g) Auerbach, J.;
Weissman, S. A.; Blacklock, T. J.; Angeles, M. R.;
Hoogsteen, K. Tetrahedron Lett. 1993, 34, 931.
After the reactions, polymer supported iodoso compound,
reduced product of IBX amide resin, can be reoxidized to
an activated IBX amide resin by using the previous proce-
1
1
(3) Clark, J. H.; Ross, J. C.; Macquarrie, D. J.; Barlow, S. J.;
dures. The regenerated IBX amide resin was indistin-
guishable from the IBX amide resin freshly prepared from
iodobenzamide resin (Figure 1).
Bastock, T. W. Chem. Commun. 1997, 1203.
(
4) (a) Chaudhuri, M. K.; Khan, A. T.; Patel, B. K. Tetrahedron
Lett. 1998, 39, 8163. (b) Bora, U.; Bose, G.; Chaudhuri, M.
K.; Dhar, S. S.; Gopinath, R.; Khan, A. T.; Patel, B. K. Org.
Lett. 2000, 2, 247. (c) Tamhankar, B. V.; Desai, U. V.;
Mane, R. B.; Wadgaonkar, P. P.; Bedekar, A. V. Synth.
Commun. 2001, 31, 2021. (d) Lee, K.-J.; Cho, H. K.; Song,
C.-E. Bull. Korean Chem. Soc. 2002, 23, 773.
(
5) (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis;
Academic Press: London, 1997. (b) Stang, P. J. J. Org.
Chem. 2003, 68, 2997. (c) Zhdankin, V. V.; Stang, P. J.
Chem. Rev. 2002, 102, 2523. (d) Wirth, T.; Hirt, U. H.
Synthesis 1999, 1271.
(6) (a) Mülbaier, M.; Giannis, A. Angew. Chem. Int. Ed. 2001,
40, 4393. (b) Sorg, G.; Mengel, A.; Jung, G.; Rademann, J.
Angew. Chem. Int. Ed. 2001, 40, 4395. (c) Reed, N. N.;
Delgado, M.; Hereford, K.; Clapham, B.; Janda, K. D.
Bioorg. Med. Chem. Lett. 2002, 12, 2047. (d) Lei, Z.;
Denecker, C.; Jegasothy, S.; Sherrington, D. C.; Slater, N. K.
H.; Sutherland, A. J. Tetrahedron Lett. 2003, 44, 1635.
7) (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew.
Chem. Int. Ed. 2002, 41, 993. (b) Nicolaou, K. C.; Gray, D.
L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed.
Figure 1 Bromination results after repetitive use of regenerated
IBX amide resin; substrate: 2,6-dichlorophenol, IBX amide re-
sin:TEAB (equiv) = 2:2, reaction time: 0.5 h.
(
In conclusion, we presented an environmentally accept-
able and convenient method for the bromination of acti-
vated arenes, using IBX amide resin and TEAB in CH Cl2
2
2
002, 41, 996. (c) Nicolaou, K. C.; Montagnon, T.; Baran, P.
S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245.
d) Nicolaou, K. C.; Barn, P. S.; Zhong, Y. L.; Barluenga, S.;
under mild reaction conditions. The simple filtration of
the reaction mixture, followed by purification using a
short silica column and the evaporation of the solvent, al-
lows the products to be obtained in high yield. This meth-
od represents an efficient and stable alternative to the
rather hazardous and cumbersome classical bromination
methods.
(
Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc.
2002, 124, 2233.
8) Shukla, V. G.; Salgaonkar, P. D.; Akamanchi, K. G. J. Org.
Chem. 2003, 68, 5422.
(
(
9) Zhdankin, V. V.; Litvinov, D. N.; Koposov, A. Y.; Luu, T.;
Ferguson, M. J.; McDonald, R.; Tykwinski, R. R. Chem.
Commun. 2004, 106.
Experimental Section
(
10) Tohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Angew.
Chem. Int. Ed. 2000, 39, 1306.
11) Chung, W.-J.; Kim, D.-K.; Lee, Y.-S. Tetrahedron Lett.
To a reaction vial (20 mL) containing IBX amide resin (1 g, 0.987
mmol, 100–200 mesh), TEAB (207.4 mg, 0.987 mmol) and an
aromatic compound (1 equiv or 1/2 equiv or 1/3 equiv or 1/4 equiv)
were added. After shaking for appropriate time (0.5 h or 2 h or
(
2003, 44, 9251.
Synlett 2005, No. 2, 279–282 © Thieme Stuttgart · New York