Full Papers
doi.org/10.1002/ejic.202100116
2017; e) C. Leblanc, H. Vilter, J. B. Fournier, L. Delage, P. Potin, E.
Catalytic Studies-Oxidative bromination of phenol and its
derivatives
Rebuffet, G. Michel, P. L. Solari, M. C. Feiters, M. Czjzek, Coord. Chem.
Rev. 2015, 301–302, 134–146; f) F. Sabuzi, G. Pomarico, B. Floris, F.
Valentini, P. Galloni, V. Conte, Coord. Chem. Rev. 2019, 385, 100–136;
g) J. C. Pessoa, I. Correia, Coord. Chem. Rev. 2019, 388, 227–247; h) R. R.
Langeslay, D. M. Kaphan, C. L. Marshall, P. C. Stair, A. P. Sattelberger, M.
Delferro, Chem. Rev. 2019, 119, 2128–2191.
In
a typical reaction, phenol (0.94 g, 10 mmol), KBr (2.38 g,
20 mmol), 30% aqueous H2O2 (2.26 g, 2.027 mL, 20 mmol) and
water (20 mL) were taken in a 50 mL reaction flask. The catalyst 1
(0.25 mg, 0.368 μmol) and 70% aqueous HClO4 (0.717 g, 0.428 mL,
5 mmol) were added and the mixture was stirred at room temper-
ature. An additional 15 mmol of HClO4 was added in three equal
portions at intervals of five minutes. After 30 minutes, the reaction
mixture was extracted with hexane and injected (ca. 0.25 μL) into
the GC. The products were finally analyzed by GC-MS and identified
by the electronic library available. Similar reaction was performed
using catalyst 2.
[11] V. Conte, B. Floris, P. Galloni, A. Silvagni, Pure Appl. Chem. 2005, 77,
1575–1581.
[12] P. Galloni, M. Mancini, B. Floris, V. Conte, Dalton Trans. 2013, 42, 11963–
11970.
[13] C. C. McLauchlan, H. A. Murakami, C. A. Wallace, D. C. Crans, J. Inorg.
Biochem. 2018, 186, 267–279.
[14] F. D’Souza, G. R. Deviprasad, Y. Y. Hsieh, J. Electroanal. Chem. 1996, 411,
167–171.
[15] N. Levy, A. Mahammed, M. Kosa, D. T. Major, Z. Gross, L. Elbaz, Angew.
Chem. Int. Ed. 2015, 54, 14080–14084; Angew. Chem. 2015, 127, 14286–
14290.
Supporting Information: Spectral Characterization, FMOs and
Optimization of Catalytic Reactions of 1 and 2.
[16] R. Kumar, N. Chaudhary, M. Sankar, M. R. Maurya, Dalton Trans. 2015, 44,
17720–17729.
supplementary crystallographic data for this paper. These data are
provided free of charge by the joint Cambridge Crystallographic
Data Centre and Fachinformationszentrum Karlsruhe Access Struc-
[17] M. Roucan, M. Kielmann, S. J. Connon, S. S. R. Bernhard, M. O. Senge,
Chem. Commun. 2018, 54, 26–29.
[18] T. A. Dar, B. Uprety, M. Sankar, M. R. Maurya, Green Chem. 2019, 21,
1757–1768.
[19] G. Pomarico, F. Sabuzi, V. Conte, P. Galloni, New J. Chem. 2019, 43,
17774–17782.
[20] P. Bhyrappa, V. Krishnan, Inorg. Chem. 1991, 30, 239–245.
[21] C. J. Schneider, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2008,
130, 2712–2713.
[22] a) T. S. Smith II, V. L. Pecoraro, Inorg. Chem. 2002, 44, 6754–6760; b) N. Z.
Mamardashvili, O. A. Golubchikov, Russ. Chem. Rev. 2001, 70, 577–606.
[23] G. A. Spyroulias, A. P. Despotopoulos, C. P. Raptopoulou, A. Terzis, D.
de Montauzon, R. Poilblanc, A. G. Coutsolelos, Inorg. Chem. 2002, 41,
2648–2659.
Acknowledgements
MRM and MS thank the Science and Engineering Research Board
(SERB), New Delhi, India for the financial support (Grant No. CRG/
2018/000182 to MRM and SERB/CRG/2020/005958 to MS). VP
thanks University Grants Commission (UGC), New Delhi, India for
the Fellowship.
[24] M. G. B. Drew, P. C. H. Mitchell, C. E. Scott, Inorg. Chim. Acta 1984, 82,
63–68.
[25] a) G. Nandi, S. Sarkar, Inorg. Chem. 2012, 51, 6412–6420; b) T.
Yamabayashi, M. Atzori, L. Tesi, G. Cosquer, F. Santanni, MÀ E. Boulon, E.
Morra, S. Benci, R. Torre, M. Chiesa, L. Sorace, R. Sessoli, M. Yamashita, J.
Am. Chem. Soc. 2018, 140, 12090–12101.
[26] S. K. Ghosh, R. Patra, S. P. Rath, Inorg. Chem. 2008, 47, 9848–9856.
[27] T. S. Smith II, R. LoBrutto, V. L. Pecoraro, Coord. Chem. Rev. 2002, 228, 1–
18.
Conflict of Interest
The authors declare no conflict of interest.
[28] M. O. Senge, Chem. Commun. 2006, 243–256.
[29] F. D’Souza, M. Zandler, P. Tagliatesta, Z. Ou, J. Shao, E. Van Caemel-
becke, K. M. Kadish, Inorg. Chem. 1998, 37, 4567–4572.
[30] P. Galloni, V. Conte, B. Floris, Coord. Chem. Rev. 2015, 301–302, 240–299.
[31] K. M. Kadish, D. Sazou, C. Araullo, Y. M. Liu, A. Saoiabi, M. Ferhat, R.
Guilard, Inorg. Chem. 1988, 27, 2313–2320.
Keywords: Oxidovanadium(IV) prophyrin · Crystal structure ·
Oxidative bromination · Phenol
[32] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L.
Korsakoff, J. Org. Chem. 1967, 32, 476–476.
[33] M. Q. E. Bin Mubarak, S. de Visser, Dalton Trans. 2019, 48, 16899–16910.
[34] F. Sabuzi, E. Churakova, P. Galloni, R. Wever, F. Hollmann, B. Floris, V.
Conte, Eur. J. Inorg. Chem. 2015,2015 3519–3525.
[1] A. Butler, J. N. Carter, M. T. Simpson, Handbook of Metalloproteins (I.
Bertini, A. Sigel, H. Sigel, eds), Marcel Dekker Inc., New York, 2001,
pp. 153–179.
[2] J. M. Winter, B. S. Moore, J. Biol. Chem. 2009, 284, 18577–18581.
[3] a) D. Rehder, Angew. Chem. Int. Ed. 1991, 30, 148–167; Angew. Chem.
1991, 103, 152–172; b) D. C. Crans, J. J. Smee, Comphrensive Coordina-
tion Chemistry II (J. A. McCleverty, T. J. Meyer, Eds) 2003, 4, 175–239;
c) A. Butler, J. N. Carter-Franklin, Nat. Prod. Rep. 2004, 21, 180–188; d) A.
Butler, M. Sandy, Nature 2009, 460, 848–854.
[4] F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T.
Walsh, Chem. Rev. 2006, 106, 3364–3378.
[5] a) A. Butler, A. H. Baldwin, Struct. Bonding 1997, 89, 109–132; b) W. Plass,
M. Bangesh, S. Nica, A. Buchholz, ACS Symp. Ser. 2007, 974, 163–177.
[6] a) A. Butler, Coord. Chem. Rev. 1999, 187, 17–35.
[35] M. R. Maurya, B. Sarkar, F. Avecilla, S. Tariq, A. Azam, I. Correia, Eur. J.
Inorg. Chem. 2016, 2016, 1430–1441.
[36] M. R. Maurya, N. Jangra, F. Avecilla, N. Ribeiro, I. Correia, ChemistrySelect
2019, 4, 12743–12756.
[37] M. Mohanty, S. K. Maurya, A. Banerjee, S. A. Patra, M. R. Maurya, A.
Crochet, K. Brzezinski, R. Dinda, New J. Chem. 2019, 43, 17680–17695.
[38] M. R. Maurya, B. Uprety, F. Avecilla, P. Adão, J. Costa Pessoa, Dalton
Trans. 2015, 44, 17736–7755.
[39] G. M. Sheldrick, SADABS, version 2.10, University of Göttingen, Germany,
2004.
[40] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J.
Puschmann, Appl. Crystallogr. 2009, 42, 339–341.
[41] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Pusch-
mann, Acta Crystallogr. 2015, A71, 59–75.
[7] S. Nica, P. Simona, A. Pohlmann, W. Plass, Eur. J. Inorg. Chem. 2005,2005
2032–2036.
[8] D. Wischang, J. Hartung, T. Hahn, R. Ulber, T. Stumpf, C. Fecher-Trost,
Green Chem. 2011, 13, 102–108.
[9] M. R. Maurya, Coord. Chem. Rev. 2019, 383, 43–81.
[10] a) A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937–1944; b) V. Conte, A.
Coletti, B. Floris, G. Licini, C. Zonta, Coord. Chem. Rev. 2011, 255, 2165–
2177; c) W. Plass, Coord. Chem. Rev. 2011, 255, 2378–2387; d) D.
Wischang, O. Brucher, J. Hartung, Coord. Chem. Rev. 2011, 255, 2204–
Manuscript received: February 9, 2021
Revised manuscript received: March 18, 2021
Eur. J. Inorg. Chem. 2021, 1685–1694
1694
© 2021 Wiley-VCH GmbH