RSC Advances
COMMUNICATION
DOI: 10.1039/C4RA12652A
RSC Advances
In summary, we have reported cetyl alcoholꢀpromoted simple
7
(a) R. Bal, M. Tada, T. Sasaki and Y. Iwasawa, Angew. Chem., 2006,
45, 448; (b) L. Wang, T. Sasaki, S. Yamamoto, K. Hayashizaki and S.
Malwadkar, M. Tada, S. Nagamatsu and Y. Iwasawa, ChemCatChem,
2013, 5, 2203.
preparation method to prepare 20ꢀ40 nm CuCr O4 spinel
2
nanoparticles having high thermal stability and good catalytic
activity for the single step conversion of benzene to phenol using
H O , exhibiting 67% benzene conversion and 94% selectivity
2
2
8
9
1
M. Tani, T. Sakamoto, S. Mita, S. Sakaguch and Y. Ishii, Angew.
Chem., 2005, 44, 2586.
towards phenol at 75 °C. The catalyst can be reused several times
without any activity loss. The experimental findings form new basis
for the structureꢀactivity relationships of the copperꢀchromium
catalysts in benzene to phenol hydroxylation chemistry, which
reflects the prerequisites for a knowledgeꢀbased design of improved
catalytic materials.The proposed method is also advantageous from
the standpoint of low cost, environmental benignity and operational
R. A. Sheldon and J. K. Kochi, MetalꢀCatalyzed Oxidations of Organic
Compounds, Academic Press, New York, 1981, 329.
0
G. I. Panov, A. S. Kharitonov and V. I. Sobolev, Appl. Catal. A, 1993,
9
8, 1.
simplicity; furthermore, it can be applicable to largeꢀscale reactions. 11 (a) J. Piera and J. E. Backvall, Angew. Chem., 2008, 47, 3506; (b) K.
This environmentally benign, “green” route to phenol production
may be a potential alternative to the existing cumene process.
Kamata, K. Yonehara, Y. Nakagawa, K. Uehara and N. Mizuno,
Nature Chem., 2010, 2, 478.
1
1
1
1
1
2
3
4
5
6
D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci and R. Vignola, Angew
Chem., 2000, 112, 4491.
Acknowledgement
S.S.A. thanks CSIR and S.G. thanks UGC, New Delhi, India,
for their respective fellowships. R.B. thanks CSIR, New Delhi, for
financial support in the form of the 12 FYP Project (CSCꢀ0125,
CSCꢀ0117). The Director of CSIRꢀIIP is acknowledged for his help
and encouragement. The authors thank the Analytical Section
Division, IIP, for the analytical services.
F. Zhang, M. Guo, H. Ge and J. Wang, Chin. J. Chem. Eng., 2007, 15,
8
95.
P. Borah, X. Ma, K. T. Nguyen and Y. Zhao, Angew. Chem., 2012, 51,
756.
7
B. Lücke, K. V. Narayana, A. Martin and K. Jähnisch, Adv. Synth.
Catal., 2004, 346, 1407.
Notes and references
(a) Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier and H. Dai,
J. Am. Chem. Soc., 2012, 134, 3517; (b) R. Prasad and P. Singh, Catal.
Rev. Sci.& Eng., 2012, 54, 224; (c) E. Santacesaria, G. Carotenuto, R.
Tesser and M. Di Serio, Chem. Eng. J., 2012, 179, 209; (d) K. L.
Deutsch, B. H. Shanks, J. Catal., 2012, 285, 235; (e) Z. Xiao, S. Jin,
M. Pang and C. Liang, Green Chem., 2013, 15, 891.
a
Catalytic Conversion & Processes Division, CSIRꢀIndian Institute of
Petroleum, Dehradunꢀ248005, India.
†
Electronic Supplementary Information (ESI) available: detailed
experimental procedure, detailed characterization techniques, XPS data,
effect of different parameters on benzene hydroxylation reaction etc. See
DOI: 10.1039/c000000x/
1
7
(a) A. M. Kawamoto, L. C. Pardini and L. C. Rezende, Aerosp. Sci.
Technol., 2004, 8, 591; (b) P.S. Sathiskumar, C. R. Thomas and G.
Madras, Ind. Eng. Chem. Res., 2012, 51, 10108.
1
2
Y. Yan, P. Feng, Q. Z. Zheng, Y. F. Liang, J. F. Lu, Y. Cui and N.
Jiao, Angew. Chem., 2013, 52, 5827.
(a) R. A. Sheldon, H. van Bekkum, Fine Chemicals through 18 A. V. Boldyre, Combust. Explosive Shock Waves, 1975, 11, 611.
Heterogeneous Catalysis, WileyꢀVCH, Weinheim, 2001, pp 1ꢀ10;
1
9
M. A. Liebert, J. Am. College of Toxicology, 1988, 7, 359.
(b) J. M. Thomas, R. Raja, G. Sankar and R. G. Bell, Nature, 1999,
3
98, 227; (c) S. S. Stahl, Angew. Chem., 2004, 43, 3400; (d) C. 20 B. Sarkar, P. Prajapati, R. Tiwari, R. Tiwari, S. Ghosh, S. S.
Acharyya, C. Pendem, R. K. Singha, L. N. S. Konathala, J. Kumar, T.
Limberg, Angew. Chem., 2003, 42, 5932; (e) E. Roduner, W. Kaim,
B. Sarkar, V. B. Urlacher, J. Pleiss, R. Gläser, W. D. Einicke, G. A.
Sprenger, U. Beifuß, E. Klemm, C. Liebner, H. Hieronymus, S. F.
Sasaki and R. Bal, Green Chem., 2012, 14, 2600.
2
2
1
2
M. R. Suchomel, D. P. Shoemaker, L. Ribaud, M. C. Kemei and R.
Seshadri, Phys. Rev. B, 2012, 86, 054406.
Hsu, B. Plietker and S. Laschat, ChemCatChem, 2013,
Ullmann’s Encyclopedia of Industrial Chemistry, WileyꢀVCH Verlag
GmbH Co. KGaA, Weinheim, 2012, vol. 26, DOI:
0.1002/14356007.a19_313.
5, 82.
3
E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleiss, R. Gläser,
W. D. Einicke, G. A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H.
Hieronymus, S. F. Hsu, B. Plietker and S. Laschat, ChemCatChem,
&
1
4
5
6
M. Tada, R. Bal, T. Sasaki, Y. Uemura, Y. Inada, S. Tanaka, M.
2
013, 5, 82.
Nomura and Y. Iwasawa, J. Phys. Chem. C, 2007, 111, 10095.
2
2
3
4
G. Pantaleo, L. F. Liotta, A. M. Venezia, G. Deganello, E. M. Ezzo, M.
A. Koekkoek, Q. Yang, R. A. van Santen, C. Li and E. J. M. Hensen,
A. El Kherbawi and H. Atia, Mater. Chem. Phys., 2009, 114, 604.
Chem. Commun., 2009, 7590.
J. K. Burdett, G. D. Price and S. L. Price, J. Am. Chem. Soc.,1982, 104,
(a) C. Walling, Acc. Chem. Res., 1975, 8, 125; (b) P. T. Tanev, M.
Chibwe and T. J. Pinnavaia, Nature, 1994, 368, 321 (c) L. Balducci, D.
Bianchi, R. Bortolo, R. D'Aloisio, M. Ricci, R. Tassinari and R.
Ungarelli, Angew. Chem., 2003, 115, 5087.
9
2.
2
2
5
6
I. A. Kazarnovsky, Dokl. AN SSSR. 1975, Vol. 221, S353 (in Russian).
A. Dubey, V. Rives and S. Kannan, J. Mol. Catal. A: Chem., 2002, 181,
1
51.
4
| RSC Advances, 2014, 00, 1-3
This journal is © The Royal Society of Chemistry 2012