Organic Process Research & Development
Page 6 of 6
Synth. Commun. 1998, 28, 1139. (i) Kumbhar, P. S.; Valnte, J.
ACKNOWLEDGMENT
S.; Figueras, F. Tetrahedron Lett. 1998, 39, 2573. (j) Marlic, C.
A.; Motamed, S.; Quinn, B. J. Org. Chem. 1995, 60, 3365. (k) B.
A. Fox B. A.; Threlfall T. L. Org. Synth. 1964, 44, 34. (l) Mahood
S. A.; Schaffner P. V. L. Org. Synth. 1931, 11, 32. (m) Béchamp,
A. J. Ann. Chim. Phys., 1854, 42, 186.
1
2
3
4
Financial support provided by Novartis and the NSF (GOALI; Sus-
ChEM 1566212) is warmly acknowledged. The authors would like to
thank Pascale Hoehn for compilation of the calorimetric report, and
Darija Dedic for miscellaneous experimental support.
5
6
7
8
(7) (a) Kelly, S. M.; Lipshutz, B. H. Org. Lett., 2014, 16, 98. (b)
Mahdavi, H.; Tamami, B. Synth. Commun. 2005, 35, 1121. (c)
Gowda, S.; Gowda, B. K. K.; Gowda, D. C. Synth. Commun.
2003, 33, 281. (d) Shundberg, R.; Pitts, W. J. Org. Chem. 1991,
56, 3048 (e) Burawoy, A.; Critchley, J. P. Tetrahedron 1959, 5,
340. (f) Coleman, G. H.; McClosky, S. M.; Suart, F. A., Org.
Synth. 1945, 25, 80. (g) Hartman, W. W.; Fierke S. S. Org. Synth.
1939, 19, 70. (h) Kock, E. Chem. Ber. 1887, 20, 1567.
(8) (a) De, P. Synlett 2004, 1835. (b) Doxsee, K. M.; Figel, M.;
Stewart, K. D.; Canary, J. W.; Knobler, C. B.; Cram, D. J. J. Am.
Chem. Soc. 1987, 109, 3098. (c) Bellamy, F. D.; Ou, K. Tetra-
hedron Lett. 1984, 25, 839. (d) Hartman W. W., Dickey J. B., and
Stampfli J. G. Org. Synth. 1935, 15, 8. (e) Clarke H. T.; Hartman,
W. W. Org. Synth. 1929, 9, 74.
(9) Booth, G. Nitro Compounds, Aromatic. In Ullman’s Encyclope-
dia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany,
2000; pp 302-349.
(10) Feng, J.; Handa, S.; Gallou, F.; Lipshutz, B. H. Angew. Chem.,
Int. Ed. 2016 55, 8979.
(11) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Or-
ganic Synthesis; 4th ed.; John Wiley & Sons, Inc.: New Jersey,
2007.
(12) Gabriel, C. M.; Lee, N. R.; Bigorne, F.; Klumphu, P.; Parmentier,
M.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2017 19, 194.
(13) Galloway, S. M.; Reddy, M. V.; McGattigan, K.; Gealy, R.; Bercu,
J. Regul. Toxicol. Pharm. 2013, 66, 326.
REFERENCES
(1) Ono, N. Preparation of Nitro Compounds. In The Nitro Group
in Organic Synthesis; Feuer, H., Ed.; Wiley-VCH: Weinheim,
Germany, 2001; pp 3-29
(2) For reviews on nitro group reductions, also see (a) Orlandi, M.;
Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Org. Process. Res.
Dev.,In Press. (b) Hudlický, M. Reductions in Organic Che-
mistry; John Wiley & Sons, Inc.: New York, 1984.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Vanier G. S., Synlett, 2007, 131. (b) Hoogenraad, M.; van
der Linden, J. B.; Smith, A. A.; Hughes, B.; Derrick, A. M.; Harris,
L. J.; Higginson, P. D.; Pettman, A. J. Org. Process Res. Dev.
2004, 8, 469. (c) Dale, D. J.; Dunn, P. J.; Golightly, C.; Hughes,
M. L.; Levett, P. C.; Pearce, A. K.; Searle, P. M.; Ward, G. W.;
Wood, A. S. Org. Process Res. Dev. 2000, 4, 17. (d) Bae, J. W.;
Cho, Y .J.; Lee, S. H.; Yoon, C. M. Tetrahedron Lett. 2000, 41,
175. (e) Ram, S.; Ehrenkaufer, R. E. Tetrahedron Lett. 1984, 25,
3415. (f) Mendenhall, G. D.; Smith, P. A. S. Org. Synth. 1966,
46, 85.
(4) (a) Pogorelić, I.; Filipan-Litvić, M.; Merkaš, S.; Ljubić, G.; Ce-
panec, I.; Litvić, M. J. Mol. Catal. A: Chem. 2007, 274, 202. (b)
Gowda, D. C.; Gowda, A. S. P.; Baba, A. R. Synth. Commun.
2000, 30, 2889. (c) Yuste, F.; Saldana, M.; Walls, F. Tetrahedron
Lett. 1982, 23, 147. (d) Dimroth, K.; Berndt, A.; Perst, H.;
Reichardt, C. Org. Synth. 1969, 49, 116. (e) Icke, R. N.; Rede-
mann, C. E.; Wisegarver, B. B.; Alles, G. A. Org. Synth. 1949, 29,
6. (f) Allen C. F. H.; Van Allan J. Org. Synth. 1942, 22, 9.
(5) (a) Adams, R.; Cohen, F. L. Org. Synth. 1928, 8, 66. (b) Chan-
drasekhar S., Prakash S. Y., Rao C. L., J. Org. Chem., 2006, 71,
2196.
(6) (a) Ingmar Bauer, I., Knölker H.-J. Chem. Rev. 2015, 115, 3170.
(b) Wienhöfer G., Sorribes I., Boddien A., Westerhaus F., Junge
K., Junge H., Llusar R., Beller M., J. Am. Chem. Soc., 2011, 133,
12875. (c) Chandrappa S., Vinaya T., Ramakrishnappa T., Ran-
gappa K. S., Synlett, 2010, 3019. (d) Liu, Y.; Lu, Y.; Prashad, M.;
Repič, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 217. (e)
Deshpande R. M., Mahajan A. N., Diwakar M. M., Ozarde P. S.,
Chaudhari R. V. J. Org. Chem., 2004, 69, 4835. (f) Vass, A.; Du-
dar, J.; Varma, R.S. Tetrahedron Lett. 2001, 42, 5347. (g)
Meshram, H. M.; Ganesh, Y. S. S.; Sekhar, K. C.; Yadav, J. S. Syn-
lett 2000, 993. (h) Sadavarte, V. S.; Swami, S. S.; Desai, D. G.
(14) Price comparaison for (ACROS Organics, 98+% pure powder):
NaBH4
$597.70/2.5
kg
($9.04/mol)
ACD
code
MFCD00003518; KBH4 $751.00/2.5 kg ($16.20/mol) ACD
code MFCD00011396.
(15) See supporting information for SEDEX thermostability plot.
(16) H2 evolution determined from a 20 mmol portion of 60 mmol
KBH4 and 20 mmol nitro compound. 60 mmol 3KBH4 = 240
mmol H- and H- consumed by the nitro compound = 20 mmol x
3 reductions = 60 mmol (scheme 1) leaves an excess of 240
mmol – 60 mmol = 180 mmol H- for the conversion to H2. From
the ideal gas law (PV=nRT) at STP (P = 1 atm; T = 298 K), 4.40
L of gas evolved for a 0.120 kg reaction arrives at 36.7 L / kg.
(17) Leboho, T. C.; Giri, S.; Popova, I.; Cock, I.; Michael, J. P.; de Ko-
ning C. B. Bioorg. Med. Chem. 2015, 23, 4943.
(18) Hagiwara, H.; Sato, K.; Hoshi, T.; Suzuki, T. Synlett 2011, 2905.
ACS Paragon Plus Environment