10.1002/cctc.201800886
ChemCatChem
COMMUNICATION
[20] M. Teranishi, R. Hoshino, S.-i. Naya, H. Tada, Angew. Chem. Int. Ed.
2016, 55, 12773-12777.
This work was funded by the Emmy-Noether (DFG, GU 1134-3)
and Heisenberg (DFG, GU 1134-4) program of the German
Research Foundation (DFG), the cluster of excellence CiPSM
and the BMBF (FKZ 031B0111A). C.J.S. thanks the Deutsche
Bundesstiftung Umwelt (grant 20015/400) and A.K. the Fonds
[21] a) Y. Ni, E. Fernandez-Fueyo, A. Gomez Baraibar, R. Ullrich, M.
Hofrichter, H. Yanase, M. Alcalde, W. J. van Berkel, F. Hollmann,
Angew. Chem. Int. Ed. 2016, 55, 798-801; b) W. Zhang, B. O. Burek, E.
Fernandez-Fueyo, M. Alcalde, J. Z. Bloh, F. Hollmann, Angew. Chem.
Int. Ed. 2017, 56, 15451-15455.
der Chemischen Industrie for
a
PhD fellowship. We
[22] W. Zhang, E. Fernández-Fueyo, Y. Ni, M. van Schie, J. Gacs, R.
Renirie, R. Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Nat.
Catal. 2018, 1, 55-62.
acknowledge Prof. Dr. Kathrin Castiglione for providing genomic
DNA of A. marina and Prof. Dr. M. Groll for technical support
and advice.
[23] J. B. Priebe, J. Radnik, A. J. J. Lennox, M.-M. Pohl, M. Karnahl, D.
Hollmann, K. Grabow, U. Bentrup, H. Junge, M. Beller, A. Brückner,
ACS Catalysis 2015, 5, 2137-2148.
Keywords: Biocatalysis • Photocatalysis • Water splitting •
Sustainable Chemistry • Halogenation
[24] X. Li, C. Chen, J. Zhao, Langmuir 2001, 17, 4118-4122.
[25] N. Tanaka, R. Wever, J. Inorg. Biochem. 2004, 98, 625-631.
[1]
[2]
[3]
[4]
D. J. Leak, R. A. Sheldon, J. M. Woodley, P. Adlercreutz, Biocatal.
Biotransform. 2009, 27, 1-26.
B. Valderrama, M. Ayala, R. Vazquez-Duhalt, Chem. Biol. 2002, 9, 555-
565.
A. Tuynman, M. K. S. Vink, H. L. Dekker, H. E. Schoemaker, R. Wever,
Eur. J. Biochem. 1998, 258, 906-913.
M. P. J. Van Deurzen, K. Seelbach, F. van Rantwijk, U. Kragl, R. A.
Sheldon, Biocatal. Biotransform. 1997, 15, 1-16.
[5]
[6]
K. Lee, S.-H. Moon, J. Biotechnol. 2003, 102, 261-268.
S. K. Karmee, C. Roosen, C. Kohlmann, S. Lutz, L. Greiner, W. Leitner,
Green Chem. 2009, 11, 1052-1055.
[7]
[8]
K. Okrasa, E. Guibe-Jampel, M. Therisod, J. Chem. Soc. 2000, 1077-
1079.
a) S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed.
2018, doi10.1002/anie.201710070, online available; b) J. A. Maciá-
Agulló, A. Corma, H. Garcia, Chem. Eur. J. 2015, 21, 10940-10959.
D. I. Perez, M. M. Grau, I. W. C. E. Arends, F. Hollmann, Chem.
Commun. 2009, 6848-6850.
[9]
[10] For a more detailed discussion on the advantages and disadvantages
of additive sacrificial electron donors please see ref. 8a.
[11] F. Rudroff, M. D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U. T.
Bornscheuer, Nat. Catal. 2018, 1, 12-22.
[12] Tertiary amines, such as EDTA and TEOA, have already been proven
to be efficient sacrificial electron donors in photobiocatalysis. For an
overview on most divers examples see ref. 8a.
[13] A. Frank, C. J. Seel, M. Groll, T. Gulder, ChemBiochem 2016, 17,
2028-2032.
[14] a) G. E. Meister Winter, A. Butler, Biochemistry 1996, 35, 11805-11811;
b) H. S. Soedjak, J. V. Walker, A. Butler, Biochemistry 1995, 34, 12689-
12696.
[15] For 1a halogenation was observed to some extend even in the absence
of FMN suggesting
a photocatalytic background reaction. Control
experiments revealed that H2O2 is generated by a direct auto-oxidation
of the electron-rich substrate 1a (see SI for details).
[16] Photochemically excited FMN can promote crosslinking of
photosensitive side chains, such as Cys, His, Trp, or Tyr, in proteins.
For examples see SI and a) D. Bhattacharya, S. Basu, P. C. Mandal, J.
Photochem. Photobiol. B 1998, 47, 173-180; b) J. D. Spikes, H.-R.
Shen, P. Kopečková, J. Kopeček, Photochem. Photobiol. 1999, 70,
130-137.
[17] T. Hering, B. Mühldorf, R. Wolf, B. König, Angew. Chem. Int. Ed. 2016,
55, 5342-5345.
[18] For previous examples on CiVHPO being used in organic synthesis
see: a) E. Fernández-Fueyo, M. van Wingerden, R. Renirie, R. Wever,
Y. Ni, D. Holtmann, F. Hollmann, ChemCatChem 2015, 7, 4035-4038;
b) J. J. Dong, E. Fernandez-Fueyo, J. Li, Z. Guo, R. Renirie, R. Wever,
F. Hollmann, Chem. Commun. 2017, 53, 6207-6210; c) E. Fernández-
Fueyo, S. H. H. Younes, S. v. Rootselaar, R. W. M. Aben, R. Renirie, R.
Wever, D. Holtmann, F. P. J. T. Rutjes, F. Hollmann, ACS Catal. 2016,
6, 5904-5907; d) H. B. ten Brink, H. L. Dekker, H. E. Schoemaker, R.
Wever, J. Inorg. Biochem. 2000, 80, 91-98; e) H. B. ten Brink, A.
Tuynman, H. L. Dekker, W. Hemrika, Y. Izumi, T. Oshiro, H. E.
Schoemaker, R. Wever, Inorg. Chem. 1998, 37, 6780-6784.
[19] M. Mifsud, S. Gargiulo, S. Iborra, I. W. C. E. Arends, F. Hollmann, A.
Corma, Nat. Commun. 2014, 5, 3145.
This article is protected by copyright. All rights reserved.