Journal of the American Chemical Society p. 16599 - 16609 (2010)
Update date:2022-08-10
Topics:
Liu, C. Tony
Maxwell, Christopher I.
Edwards, David R.
Neverov, Alexei A.
Mosey, Nicholas J.
Brown, R. Stan
The methanolytic cleavage of a series of O,O-dimethyl O-aryl phosphorothioates (1a-g) catalyzed by a C,N-palladacycle, (2-[N,N- dimethylamino(methyl)phenyl]-C1,N)(pyridine) palladium(II) triflate (3), at 25 °C and sspH 11.7 in methanol is reported, along with data for the methanolytic cleavage of 1a-g. The methoxide reaction gives a linear log k2-OMe vs sspKa (phenol leaving group) Bronsted plot having a gradient of βlg = -0.47 ± 0.03, suggesting about 34% cleavage of the P-OAr bond in the transition state. On the other hand, the 3-catalyzed cleavage of 1 gives a Bronsted plot with a downward break at sspKa (phenol) ~ 13, signifying a change in the rate-limiting step in the catalyzed reaction, with the two wings having βlg values of 0.0 ± 0.03 and -1.93 ± 0.06. The rate-limiting step for good substrates with low leaving group sspKa values is proposed to be substrate/pyridine exchange on the palladacycle, while for substrates with poor leaving groups, the rate-limiting step is a chemical one with extensive cleavage of the P-OAr bond. DFT calculations support this process and also identify two intermediates, namely, one where substrate/pyridine interchange has occurred to give the palladacycle coordinated to substrate through the S - P linkage and to methoxide (6) and another where intramolecular methoxide attack has occurred on the P - S unit to give a five-coordinate phosphorane (7) doubly coordinated to Pd via the S- and through a bridging methoxide linked to P and Pd. Attempts to identify the existence of the phosphorane by 31P NMR in a d4-methanol solution containing 10 mM each of 3, trimethyl phosphorothioate (a very slow cleaving substrate), and methoxide proved unsuccessful, instead showing that the phosphorothioate was slowly converted to trimethyl phosphate, with the palladacycle decomposing to Pd0 and free pyridine. These results provide the first reported example where a palladacycle-promoted solvolysis reaction exhibits a break in the Bronsted plot signifying at least one intermediate, while the DFT calculations provide further insight into a more complex mechanism involving two intermediates.
View MoreQingdao Pana-Life Biochem Co.,Ltd.
Contact:86-532-87683902
Address:No.967 Dalao Road, Licang Zone, Qingdao City,Shandong, China 266021
Hangzhou GreenCo Science & Technology Co., Ltd.
Contact:86-571-88257303
Address:1713 Room,Jingui Building,Gudun Road,Xihu District,Hangzhou,China
Changsha Yonta Industry Co., Ltd.
Contact:+ 86-731-8535 2228
Address:Rm.1717, North Bldg., No.368, East 2nd Ring Road(2nd Section)
Henan Techway Chemical Co.,Ltd.
website:http://www.techwaychem.com
Contact:+86-371-66380080
Address:No.27 Shunhe Road,
Shanghai Standard Biotech Co., Ltd.
Contact:+86-18502101150
Address:Room 103, Building 2nd, NO.720, Cailun Road , Pudong District, Shanghai, China
Doi:10.1016/j.bmc.2017.12.017
(2018)Doi:10.1021/acs.chemmater.6b03177
(2016)Doi:10.1039/c3ob41873a
(2014)Doi:10.1021/ac60328a033
(1973)Doi:10.1002/aoc.5710
(2020)Doi:10.1016/S0040-4039(01)90784-1
(1963)