P. Servin et al. / Tetrahedron Letters 53 (2012) 3876–3879
3879
6. (a) Bravo, J.; Bolano, S.; Gonsalvi, L.; Peruzzini, M. Coord. Chem. Rev. 2010, 254,
555–607; (b) Zablocka, M.; Hameau, A.; Caminade, A.-M.; Majoral, J.-P. Adv.
Synth. Catal. 2010, 352, 2341–2358; (c) Cadierno, V.; Diez, J.; Francos, J.;
Gimeno, J. Chem. Eur. J. 2010, 16, 9808–9817; (d) Cadierno, V.; Francos, J.;
Gimeno, J. Chem. Eur. J. 2008, 14, 6601–6605; (e) Lidrissi, C.; Romerosa, A.;
Saoud, M.; Serrano-Ruiz, M.; Gonsalvi, L.; Peruzzini, M. Angew. Chem., Int. Ed.
2005, 44, 2568–2572; (f) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.;
Peruzzini, M. Coord. Chem. Rev. 2004, 248, 955–993; (g) Mejia-Rodriguez, R.;
Chong, D.; Reibenspies, J. H.; Soraga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc.
2004, 126, 12004–12014; (h) Darensbourg, M. Y.; Daigle, D. Inorg. Chem. 1975,
14, 1217–1218.
Figure 4. Numbering scheme used for NMR assignment.
7. Caminade, A. M.; Majoral, J. P. Prog. Polym. Sci. 2005, 30, 491–505.
8. Servin, P.; Laurent, R.; Gonsalvi, L.; Tristany, M.; Peruzzini, M.; Majoral, J. P.;
Caminade, A. M. Dalton Trans. 2009, 4432–4434.
9. Launay, N.; Caminade, A. M.; Majoral, J. P. J. Organomet. Chem. 1997, 529, 51–58.
10. Synthesis of dendrimer 3-G2. 0.500 g (274 lmol) of 2-G1, 0.747 g (3.56 mmol)
dendrimer 6-G2 gives the best results. An estimation of the density
of the terminal groups was obtained assuming a spherical shape
for the dendrimers. A correlation between the density and the cat-
alytic efficiency is observed; increasing the local density of cata-
lytic entities increases the catalytic efficiency (right part of Fig. 3).
In conclusion, by using three dendrimers related either by the
number of terminal groups or by the size, our experiments, and
more precisely the catalyzed hydration of alkynes, have demon-
strated for the first time the importance, and the positive influence
of the density of the catalytic entities on the efficiency of the catal-
ysis. We intend to expand the scope of this study to other dendri-
mers and other catalyzed reactions.
of 5-hydroxy-dimethylisophthalate, and 2.32 g (7.11 mmol) of Cs2CO3 were
dissolved in 50 mL distilled THF. The reaction mixture was left stirring
overnight and two filtrations over celite were made and an evaporation. 3-G2
was obtained as a white powder in 60% yield. 3-G2: 31P {1H} NMR (81 MHz,
CDCl3), 11.2 (s, P0), 66.2 (s, P1). 1H NMR (200 MHz, CDCl3), 3.31 (d,
3
3JHP = 10.7 Hz, 18 H, C06H), 3.83 (s, 72 H, CH3O), 7.09 (d, JHH = 8.4 Hz, 12 H,
C02H), 7.62 (d, 3JHH = 8.4 Hz, 12 H, C03H), 7.67 (s, 6 H, C05H), 8.02 (s, 24 H, C12H),
8.45 (s, 12 H, C14H). 13C {1H} NMR (50 MHz, CDCl3), 32.92 (d, JCP = 12.8 Hz,
2
3
C06H), 52.58 (s, CH3O), 121.12 (s, C02), 126.78 (d, JCP = 4.3 Hz, C12), 127.69 (s,
C14), 128.45 (s, C03), 131.65 (s, C04), 132.12 (s, C13), 139.98 (d, JCP = 14.3 Hz,
3
C05), 150.49 (d, 2JCP = 7.1 Hz, C11), 151.41 (d, 2JCP = 6.8 Hz, C01), 165.06 (s, C@O).
The numbering used for the assignment of NMR signals for this compound and
others is displayed in Figure 4.
Acknowledgments
11. Synthesis of dendrimer 4-G2. 3-G2 (1.04 g, 266 lmol) was dissolved in distilled
THF (100 mL). The solution was cooled by acetone/N2(liquid). A 1 M solution of
LiAlH4 in THF (5.3 mL, 5.3 mmol) was added to the cooled solution, and the
reaction was left stirring for 2 hours. The reaction was quenched by the
addition of a few drops of H2O and then aqueous HCl to correct the pH. A
filtration was made and the residual solid was freeze-dried. 4-G2 was obtained
as a white powder in 31% yield. 4-G2: 31P {1H} NMR (81 MHz, CD3OD), 12.4 (s,
P0), 65.6 (s, P1). 1H NMR (200 MHz, CD3OD), 3.29 (d, 3JHP = 10.5 Hz, 18 H, C06H),
Thanks are due to the European Community through the con-
tract MRTN-CT-2003-503864 (AQUACHEM) for financial support
(grant to P. Servin) and the COST program CM0802 (PhoSciNet).
This work was also supported by the CNRS and by the ANR DEND-
SWITCH (grant to H. Dib). M.P. and L.G. thank MIUR for partial sup-
port through PRIN 2009 program.
3
4.51 (s, 48 H, C25H), 6.94 (d, JHH = 8.6 Hz, 12 H, C02H), 7.13 (s, 36 H,
3
C12H + C14H), 7.60 (d, JHH = 8.6 Hz, 12 H, C03H), 7.70 (s, 6 H, C05H). 13C {1H}
NMR (63 MHz, CD3OD), 32.26 (d, 2JCP = 11.32 Hz, C06), 63.12 (s, C25), 117.91 (d,
3JCP = 4.4 Hz, C12), 120.99 (br s, C02), 121.50 (s, C14), 128.19 (s, C032), 132.56 (s,
References and notes
3
C04), 139.29 (d, JCP = 14.5 Hz, C05), 143.57 (s, C13), 151.06 (br d, JCP = 7.6 Hz,
C01 + C11). See Figure 4 for the numbering used.
1. Caminade, A. M.; Turrin, C. O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B.;
Towards Catalytic, Dendrimers. Materials and Biomedical Uses; John Wiley &
Sons: Chichester (UK), 2011.
2. Van Koten, G.; Grove, D. M.; Wijkens, P.; van Leeuwen, P. W.; de Wilde, J. C.; van
der Made, A. W.; Knapen, J. W. C. Nature 1994, 372, 659–663.
12. Synthesis of dendrimer 5-G2. 6 mL of SOCl2 were added to 0.178 g (54 lmol) of
4-G2. The mixture was cooled by means of ice-bath and left stirring overnight.
To evaporate the excess SOCl2, toluene was used for co-evaporation. 5-G2 was
obtained as a white powder in 79% yield. 5-G2: 31P {1H} NMR (81 MHz, CDCl3),
11.4 (s, P0), 65.3 (s, P1). 1H NMR (200 MHz, CDCl3), 3.27 (d, 3JHP = 10.7 Hz, 18 H,
3. See for instance: (a) Caminade, A.-M.; Servin, P.; Laurent, R.; Majoral, J.-P. Chem.
Soc. Rev. 2008, 37, 56–67; (b) Helms, B.; Fréchet, J. M. J. Adv. Synth. Catal. 2006,
348, 1125–1148; (c) Kassube, J. K.; Gade, L. H. Top. Organomet. Chem. 2006, 20,
61–96; (d) Dahan, A.; Portnoy, M. J. Polym. Sci., Part A: Polym. Chem. 2005, 43,
235–262; (e) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P.; Reek, J. N. H.
Chem. Rev. 2002, 102, 3717–3756; (f) Romagnoli, B.; Hayes, W. J. Mater. Chem.
2002, 12, 767–799; (g) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101, 2991–3023;
(h) Kreiter, R.; Kleij, A. W.; Gebbink, R. J. M.; van Koten, G. Top. Curr. Chem. 2001,
217, 163–199.
4. (a) Maraval, V.; Caminade, A. M.; Majoral, J. P.; Blais, J. C. Angew. Chem., Int. Ed.
2003, 42, 1822–1826; (b) Rolland, O.; Griffe, L.; Poupot, M.; Maraval, A.; Ouali,
A.; Coppel, Y.; Fournié, J. J.; Bacquet, G.; Turrin, C. O.; Caminade, A. M.; Majoral,
J. P.; Poupot, R. Chem. Eur. J. 2008, 14, 4836–4850.
5. (a) Bardaji, M.; Caminade, A. M.; Majoral, J. P.; Chaudret, B. Organometallics
1997, 16, 3489–3497; (b) Koprowski, M.; Sebastian, R. M.; Maraval, V.;
Zablocka, M.; Cadierno Menendez, V.; Donnadieu, B.; Igau, A.; Caminade, A.
M.; Majoral, J. P. Organometallics 2002, 21, 4680–4687; (c) Laurent, R.;
Caminade, A. M.; Majoral, J. P. Tetrahedron Lett. 2005, 46, 6503–6506; (d)
Ouali, A.; Laurent, R.; Caminade, A. M.; Majoral, J. P.; Taillefer, M. J. Am. Chem.
Soc. 2006, 128, 15990–15991; (e) Gissibl, A.; Padié, C.; Hager, M.; Jaroschick, F.;
Rasappan, R.; Cuevas-Yanez, E.; Turrin, C. O.; Caminade, A. M.; Majoral, J. P.;
Reiser, O. Org. Lett. 2007, 9, 2895–2898; (f) Servin, P.; Laurent, R.; Romerosa, A.;
Peruzzini, M.; Majoral, J. P.; Caminade, A. M. Organometallics 2008, 27, 2066–
2073.
3
C06H), 4.44 (s, 48 H, C25H), 7.03 (d, JHH = 8.5 Hz, 12 H, C02H), 7.18 (br s, 36 H,
3
C12H + C14H), 7.56 (br d, JHH = 8.5 Hz, 18 H, C05H + C03H). 13C {1H} NMR
2
(63 MHz, CDCl3), 33.01 (d, JCP = 12.5 Hz, C06), 45.11 (s, C25), 121.36 (s, C12),
121.43 (s, C02), 125.46 (s, C14), 128.34 (s, C03), 131.88 (s, C04), 139.22 (d,
2
3JCP = 14.2 Hz, C05), 139.62 (s, C13), 150.81 (d, JCP = 7.30 Hz, C11), 151.33 (br s,
C01). See Figure 4 for the numbering used.
13. Synthesis of dendrimer 6-G2. 0.127 g (34 lmol) of 5-G2 and 0.144 g (891 lmol)
of PTA were dissolved in distilled THF (20 mL). The reaction was left stirring
overnight and then filtrated. After evaporation of the solution, four washings
with THF were made. 6-G2 was obtained as a white powder in 38% yield. 6-G2:
31P {1H} NMR (81 MHz, D2O/CD3CN), À76.4 (s, P2), 14.4 (s, P0), 70.6 (m, P1). 1
H
NMR (200 MHz, D2O/CD3CN), 3.43-3.72 (br m, 18 H, C06H), 3.80-5.28 (br m, 336
H,
C25H + C26H + C27H + C28H + C29H),
6.43-8.15
(br
m,
66
H,
C02H + C03H + C05H + C12H + C14H). See Figure 4 for the numbering used.
14. Leclaire, J.; Coppel, Y.; Caminade, A. M.; Majoral, J. P. J. Am. Chem. Soc. 2004, 126,
2304–2305.
15. Varela-Alvarez, A.; Sordo, J. A.; Piedra, E.; Nebra, N.; Cadierno, V.; Gimeno, J.
Chem. Eur. J. 2011, 17, 10583–10599.
16. Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 2746–
2747.
17. Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3160.