8720 J. Agric. Food Chem., Vol. 53, No. 22, 2005
Hambraeus and Nyberg
(17) Hubatsch, I.; Ridderstrom, M.; Mannervik, B. Human glutathione
transferase A4-4: an R class enzyme with high catalytic
efficiency in the conjugation of 4-hydroxynonenal and other
genotoxic products of lipid peroxidation. Biochem. J. 1998, 330,
175-179.
(18) Burczynski, M. E.; Sridhar, G. R.; Palackal, N. T.; Penning, T.
M. The reactive oxygen species and Michael acceptor-inducible
human aldo-keto reductase AKR1C1 reduces the R,â-unsaturated
aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J.
Biol. Chem. 2001, 276, 2890-2897.
(19) Sellin, S.; Holmquist, B.; Mannervik, B.; Vallee, B. L. Oxidation
and reduction of 4-hydroxyalkenals catalyzed by isozymes of
human alcohol dehydrogenase. Biochemistry 1991, 30, 2514-
2518.
(20) Mano, J.; Torii, Y.; Hayashi, S.; Takimoto, K.; Matsui, K., et
al. The NADPH:quinone oxidoreductase P1-ú-crystallin in
Arabidopsis catalyzes the R,â-hydrogenation of 2-alkenals:
detoxication of the lipid peroxide-derived reactive aldehydes.
Plant Cell Physiol. 2002, 43, 1445-1455.
reaction as ALH1, that is, hydrogenation of the double bond of
R,â-unsaturated aldehydes (data not shown). However, com-
parison of reaction kinetics between ALH1 and ALH2 revealed
distinct differences. ALH2 could, for example, not convert T2N,
leaving open the possibility that the ALH paralogs have different
biological roles. So far, traumatin is the only substrate identified
for ALH2, but a high Km value (110 µM) suggests that other
molecules exhibit more important biological roles in vivo.
It is likely that an examination of the regulation of the alh
genes would provide important clues to the physiological
role(s) of this gene family. In addition, studying barley plants
with reduced or increased ALH activity could be helpful. In
any case, the potential commercial value of such mutants should
motivate both brewers and breeders to further study these genes
and enzymes.
ACKNOWLEDGMENT
We thank Ole Olsen for valuable discussions and critical reading
of the manuscript.
(21) Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman,
D. J. Basic local alignment search tool. J. Mol. Biol. 1990, 215,
403-410.
(22) Horton, R. M.; Hunt, H. D.; Ho, S. N.; Pullen, J. K.; Pease, L.
R. Engineering hybrid genes without the use of restriction
enzymes: gene splicing by overlap extension. Gene 1989, 77,
61-68.
(23) Joshi, C. P.; Zhou, H.; Huang, X.; Chiang, V. L. Context
sequences of translation initiation codon in plants. Plant Mol.
Biol. 1997, 35, 993-1001.
(24) Ware, D.; Jaiswal, P.; Ni, J.; Pan, X.; Chang, K., et al.
Gramene: a resource for comparative grass genomics. Nucleic
Acids Res. 2002, 30, 103-105.
(25) Nordling, E.; Jornvall, H.; Persson, B. Medium-chain dehydro-
genases/reductases (MDR). Family characterizations including
genome comparisons and active site modeling. Eur. J. Biochem.
2002, 269, 4267-4276.
LITERATURE CITED
(1) Meilgaard, M. C. Flavor chemistry of beer: part II. Flavor and
threshold of 239 aroma volatiles. MBAA Tech. Q. 1975, 12, 151-
168.
(2) Jamieson, A. M.; van Gheluwe, J. E. A. Identification of a
compound responsible for cardboard flavor in beer. Proc. Am.
Soc. Brew. Chem. 1974, 192-197.
(3) Wang, P.; Siebert, K. Determination of trans-2-nonenal in beer.
MBAA Tech. Q. 1974, 11, 110-117.
(4) Drost, B. W.; van Eerde, P.; Hoekstra, S. F.; Strating, J. Fatty
acids and staling of beer. EBC Proc. 1971, 451-458.
(5) Witt, P. R.; Burdick II, A. Lipids in brewing and brewing
materials. ASBC Proc. 1961, 19, 104-110.
(26) Edwards, K. J.; Barton, J. D.; Rossjohn, J.; Thorn, J. M.; Taylor,
G. L., et al. Structural and sequence comparisons of quinone
oxidoreductase, ú-crystallin, and glucose and alcohol dehydro-
genases. Arch. Biochem. Biophys. 1996, 328, 173-183.
(27) Noordermeer, M. A.; Veldink, G. A.; Vliegenthart, J. F. Fatty
acid hydroperoxide lyase: a plant cytochrome P450 enzyme
involved in wound healing and pest resistance. ChemBioChem
2001, 2, 494-504.
(28) Halitschke, R.; Ziegler, J.; Keinanen, M.; Baldwin, I. T. Silencing
of hydroperoxide lyase and allene oxide synthase reveals
substrate and defense signaling crosstalk in Nicotiana attenuata.
Plant J. 2004, 40, 35-46.
(29) Trombetta, D.; Saija, A.; Bisignano, G.; Arena, S.; Caruso, S.,
et al. Study on the mechanisms of the antibacterial action of
some plant R,â-unsaturated aldehydes. Lett. Appl. Microbiol.
2002, 35, 285-290.
(30) Zimmermann, D. C.; Coudron, C. A. Identification of traumatin,
a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant
Physiol. 1979, 63, 536-541.
(31) Dick, R. A.; Kwak, M. K.; Sutter, T. R.; Kensler, T. W.
Antioxidative function and substrate specificity of NAD(P)H-
dependent alkenal/one oxidoreductase. A new role for leukotriene
B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase.
J. Biol. Chem. 2001, 276, 40803-40810.
(32) Noguchi, T.; Fujioka, S.; Takatsuto, S.; Sakurai, A.; Yoshida,
S., et al. Arabidopsis det2 is defective in the conversion of (24R)-
24-methylcholest-4-en-3-one to (24R)-24-methyl-5R-cholestan-
3-one in brassinosteroid biosynthesis. Plant Physiol. 1999, 120,
833-840.
(33) Sunkar, R.; Bartels, D.; Kirch, H. H. Overexpression of a stress-
inducible aldehyde dehydrogenase gene from Arabidopsis thaliana
in transgenic plants improves stress tolerance. Plant J. 2003,
35, 452-464.
(6) Lermusieau, G.; Noel, S.; Liegeois, C.; Collin, S. Nonoxidative
mechanism for development of trans-2-nonenal in beer. J. Am.
Soc. Brew. Chem. 1999, 57, 29-33.
(7) Liegeois, C.; Meurens, N.; Badot, C.; Collin, S. Release of
deuterated (E)-2-nonenal during beer aging from labeled precur-
sors synthesized before boiling. J. Agric. Food Chem. 2002, 50,
7634-7638.
(8) Nyborg, M.; Outtrup, H.; Dreyer, T. Investigations of the
protective mechanism of sulfite against beer staling and formation
of adducts with trans-2-nonenal. J. Am. Soc. Brew. Chem. 1999,
57, 24-28.
(9) Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu.
ReV. Plant Biol. 2002, 53, 275-297.
(10) Noordermeer, M. A.; Veldink, G. A.; Vliegenthart, J. F. Alfalfa
contains substantial 9-hydroperoxide lyase activity and a 3Z:
2E-enal isomerase. FEBS Lett. 1999, 443, 201-204.
(11) Matsui, K.; Ujita, C.; Fujimoto, S.; Wilkinson, J.; Hiatt, B., et
al. Fatty acid 9- and 13-hydroperoxide lyases from cucumber.
FEBS Lett. 2000, 481, 183-188.
(12) van Mechelen, J. R.; Schuurink, R. C.; Smits, M.; Graner, A.;
Douma, A. C., et al. Molecular characterization of two lipoxy-
genases from barley. Plant Mol. Biol. 1999, 39, 1283-1298.
(13) Kuroda, H.; Furusho, S.; Maeba, H.; Takashio, M. Characteriza-
tion of factors involved in the production of 2(E)-nonenal during
mashing. Biosci., Biotechnol., Biochem. 2003, 67, 691-697.
(14) Hirota, N.; Kaneko, T.; Kuroda, H.; Takoi, K.; Takeda, K. Barley
lipoxygenase 1 gene, method of selecting barley variety, material
of malt alcoholic drinks and process for producing malt alcoholic
drink. PCT Int. Appl. WO04/085652, 2004.
(15) Hirota, N.; Kuroda, H.; Takoi, K.; Kaneko, T.; Kaneda, H., et
al. Brewing performance of lipoxygenase-1-less barley. Brew.
Dig. 2004, 35.
(16) Witz, G. Biological interactions of R,â-unsaturated aldehydes.
Free Radical Biol. Med. 1989, 7, 333-349.