142
M.T. Schaal et al. / Journal of Catalysis 254 (2008) 131–143
provides a more controlled and more intimate contact between
the Ag and Pt than IW methods. Furthermore, infrared studies
show that the deposited Ag is preferentially located on Pt(111)
sites, leaving corner and edge sites available for CO adsorption.
Bimetallic Ag–Pt catalysts prepared by both electroless de-
position and incipient wetness methods gave the same general
trends in catalytic activity and selectivity for the hydrogenation
of 3,4-epoxy-1-butene (EpB). However, the catalysts prepared
by ED methods were more responsive to changes of Ag load-
ing, indicating that ED provided a targeted placement of Ag on
the Pt surface.
[3] W. Sachtler, Appl. Surf. Sci. 19 (1984) 167.
[4] J.T. Wrobleski, M. Boudart, Catal. Today 15 (1992) 349.
[5] G. Ertl, H. Knozinger, J. Weitkamp (Eds.), Handbook of Heterogeneous
Catalysis, VCH, Weinheim, 1997, p. 13, 35–38, 191–195, 257–261, 365–
367.
[6] L. Guczi, Stud. Surf. Sci. Catal. 29 (1986) 547.
[7] B. Chandler, L. Pignolet, Catal. Today 65 (2001) 39.
[8] S. Djokic, Mod. Aspect Electroc. 35 (2002) 51.
[9] I. Ohno, Mater. Sci. Eng. A 146 (1991) 33.
[10] M.T. Schaal, A.Y. Metcalf, J.H. Montoya, J.P. Wilkinson, C.C. Stork, C.T.
Williams, J.R. Monnier, Catal. Today 123 (2007) 142.
[11] M. Bartok, A. Fasi, F. Notheisz, J. Catal. 175 (1998) 40.
[12] R. Disselkkamp, K.M. Judd, T.R. Hart, C.H.F. Peden, G.J. Posakony, L.J.
Bond, J. Catal. 221 (2004) 347.
EpB conversion over Pt/SiO2 was greatly enhanced (∼3×)
by the addition of Ag, which is not active for EpB hydrogena-
tion. The increased activity is clearly linked to the modification
of the Pt surface by the addition of small amounts of Ag. This
modification appears to involve the Ag-induced reduction of
Pt–EpB interaction due to ensemble and/or bifunctional effects
since any electronic effects present in this system appear to be
relatively small. Product distribution was also modified with
Ag addition. The results indicate that BO formation is favored
on the Ag-modified Pt(111) sites. In general, hydrogenolysis
product formation appears to be favored on low coordination Pt
sites, such as corners and edges.
[13] M. Englisch, V. Ranade, J. Lercher, Appl. Catal. A Gen. 163 (1997) 111.
[14] H. Fujitsu, E. Matsumura, S. Shirahama, K. Takeshita, I. Mochida,
J. Chem. Soc. Perkin Trans. 1 855 (1982) 855.
[15] J. Simonik, L. Beranek, J. Catal. 24 (1972) 348.
[16] P. Rylander, Catalytic Hydrogenation over Platinum Metals, Academic
Press, New York, 1967, pp. 107, 250–252, 476–483.
[17] J. Monnier, B. Roberts, D. Hitch, US Patent 6,180 559 (2001), to Eastman
Chemical Company.
[18] W. Brown, C. Foote, Organic Chemistry, Harcourt College Publishers,
New York, 2002, pp. 257, 284–285, 410.
[19] M. Bartok, A. Fasi, F. Notheisz, J. Mol. Catal. A Chem. 135 (1998) 307.
[20] A. Loh, W. Medlin, J. Am. Chem. Soc (2007), submitted for publication.
[21] J.W. Medlin, Doctoral Thesis, U. Del. Dept. Chem. Engr., Newark, 2001,
pp. 80–117.
Overall, it has been demonstrated that ED is a feasi-
ble method for the preparation of bimetallic catalysts. This
methodology promotes the controlled deposition of even small
amounts of a second metal on the surface of a pre-existing
metal to give a more targeted placement of the metal than that
obtained using traditional methodologies. Further, EpB hydro-
genation is an informative probe reaction since it contains two
distinctly different functional groups, a C=C bond and a reac-
tive epoxy group.
[22] J.R. Monnier, Stud. Surf. Sci. Catal. 110 (1997) 135.
[23] C. Rao, D. Trivedi, Coordin. Chem. Rev. 249 (2005) 613.
[24] B.D. Barker, Surf. Technol. 12 (1981) 77.
[25] K. Chou, Y. Lu, H. Lee, Mater. Chem. Phys. 94 (2005) 429.
[26] D. Harris, Quantitative Chemical Analysis, W.H. Freeman and Co., New
York, 1999, pp. 337–363, AP13, AP34-35.
[27] J.A. Dean (Ed.), Lange’s Handbook of Chemistry, McGraw–Hill, Inc.,
New York, 1992, pp. 8.10.
[28] K.P. de Jong, J.W. Geus, Appl. Catal. 4 (1982) 41.
[29] J. Park, J.R. Rebalbuto, J. Colloid Interface Sci. 175 (1995) 239.
[30] K.P. de Jong, B.E. Bongenaar-Schlenter, G.R. Meima, R.C. Verkerk,
M.J.J. Lammers, J.W. Geus, J. Catal. 81 (1983) 67.
[31] K.P. de Jong, J.W. Geus, Stud. Surf. Sci. Catal. 16 (1983) 111.
[32] C. Mijoule, V. Russier, Surf. Sci. 254 (1991) 329.
[33] S. Yuvaraj, S.-C. Chow, C.-T. Yeh, J. Catal. 198 (2001) 187.
[34] J. Freysz, J. Saussey, J. Lavalley, P. Bourges, J. Catal. 197 (2001) 131.
[35] P. Fanson, N. Delgass, J. Lauterbach, J. Catal. 204 (2001) 35.
[36] C. Cruz, N. Sheppard, Spectrochim. Acta 50A (1994) 271.
[37] R. Greenler, K. Burch, Surf. Sci. 152/153 (1985) 338.
[38] J. Rasko, J. Catal. 217 (2003) 478.
Acknowledgments
This research project was supported financially by the Uni-
versity of South Carolina Nanocenter, NSF Grant No. 0456899,
and by an NSF Graduate Research Fellowship for MTS. The
authors also gratefully acknowledge BASF Catalysts LLC for
supplying the Pt/SiO2 base catalyst and Eastman Chemical
Company for supplying the EpB used in this study. Further,
the authors would like to thank Dr. Will Medlin for his in-
sightful discussions and Ms. Carol Stork for valuable analytical
assistance. Finally, JRM would like to acknowledge Dr. Joseph
Yudelson, his former laboratory head at Kodak Research Labo-
ratories, for introducing him to the concept of electroless depo-
sition.
[39] R. Brandt, M. Hughes, L. Bourget, K. Truszkowska, R. Greenler, Surf.
Sci. 286 (1993) 15.
[40] B. Hayden, A. Bradshaw, Surf. Sci. 125 (1983) 787.
[41] R. Van Hardeveld, F. Hartog, Surf. Sci. 15 (1969) 189.
[42] J. Rodriguez, C. Truong, D. Goodman, Surf. Sci. Lett. 271 (1992) L331.
[43] F. Gauthard, F. Epron, J. Barbier, J. Catal. 220 (2003) 182.
[44] A. Crossley, D.A. King, Surf. Sci. 95 (1980) 131.
[45] R.A. Shigeishi, D.A. King, Surf. Sci. Lett. 75 (1978) L397.
[46] A. Crossley, D.A. King, Surf. Sci. 68 (1977) 528.
[47] C.W. Olsen, R.I. Masel, Surf. Sci. 201 (1988) 444.
[48] C. Mihut, Synthesis and Characterization of Bimetallic Platinum–Gold
Catalysts, Doctoral Thesis, USC Dept. Chem. Engr., Columbia, 2002,
pp. v–vii, 67–70, 123–124, 152–153, 174–179.
Supplementary material
The online version of this article contains additional supple-
mentary material.
[49] V. Borovkov, S. Kolesnikov, V. Kovalchuk, J. d’Itri, J. Phys. Chem. B 109
(2005) 19772.
[50] H. Roder, R. Schuster, H. Brune, K. Kern, Phys. Rev. Lett. 71 (1993) 2086.
[51] C. Micheaud, M. Guerin, P. Marecot, C. Geron, J. Barbier, J. Chim.
Phys. 93 (1996) 1394.
References
[1] M. Kuhn, J. Rodriguez, J. Catal. 154 (1995) 355.
[2] T. Miyake, A. Tetsuo, Appl. Catal. A Gen. 280 (2005) 47.
[52] R. Campostrini, G. Carturan, S. Dirè, P. Scardi, J. Mol. Catal. 53 (1989)
L13.